清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Lineage segregation in human pre-implantation embryos is specified by YAP1 and TEAD1

谱系(遗传) 胚胎 生物 遗传学 男科 医学 基因
作者
Marius Regin,Wafaa Essahib,Andrej Demtschenko,D. Dewandre,Laurent David,Claudia Gerri,Kathy K. Niakan,G. Verheyen,Herman Tournaye,Johan Sterckx,Karen Sermon,H. Van de Velde
出处
期刊:Human Reproduction [Oxford University Press]
卷期号:38 (8): 1484-1498 被引量:11
标识
DOI:10.1093/humrep/dead107
摘要

Abstract STUDY QUESTION Which processes and transcription factors specify the first and second lineage segregation events during human preimplantation development? SUMMARY ANSWER Differentiation into trophectoderm (TE) cells can be initiated independently of polarity; moreover, TEAD1 and YAP1 co-localize in (precursor) TE and primitive endoderm (PrE) cells, suggesting a role in both the first and the second lineage segregation events. WHAT IS KNOWN ALREADY We know that polarity, YAP1/GATA3 signalling and phospholipase C signalling play a key role in TE initiation in compacted human embryos, however, little is known about the TEAD family of transcription factors that become activated by YAP1 and, especially, whether they play a role during epiblast (EPI) and PrE formation. In mouse embryos, polarized outer cells show nuclear TEAD4/YAP1 activity that upregulates Cdx2 and Gata3 expression while inner cells exclude YAP1 which upregulates Sox2 expression. The second lineage segregation event in mouse embryos is orchestrated by FGF4/FGFR2 signalling which could not be confirmed in human embryos; TEAD1/YAP1 signalling also plays a role during the establishment of mouse EPI cells. STUDY DESIGN, SIZE, DURATION Based on morphology, we set up a development timeline of 188 human preimplantation embryos between Day 4 and 6 post-fertilization (dpf). The compaction process was divided into three subgroups: embryos at the start (C0), during (C1), and at the end (C2) of, compaction. Inner cells were identified as cells that were entirely separated from the perivitelline space and enclosed by cellular contacts on all sides. The blastulation process was divided into six subgroups, starting with early blastocysts with sickle-cell shaped outer cells (B0) and further on, blastocysts with a cavity (B1). Full blastocysts (B2) showed a visible ICM and outer cells referred to as TE. Further expanded blastocysts (B3) had accumulated fluid and started to expand due to TE cell proliferation and zona pellucida (ZP) thinning. The blastocysts then significantly expanded further (B4) and started to hatch out of the ZP (B5) until they were fully hatched (B6). PARTICIPANTS/MATERIALS, SETTING, METHODS After informed consent and the expiration of the 5-year cryopreservation duration, 188 vitrified high quality eight-cell stage human embryos (3 dpf) were warmed and cultured until the required stages were reached. We also cultured 14 embryos that were created for research until the four- and eight-cell stage. The embryos were scored according to their developmental stage (C0–B6) displaying morphological key differences, rather than defining them according to their chronological age. They were fixed and immunostained for different combinations of cytoskeleton (F-actin), polarization (p-ERM), TE (GATA3), EPI (NANOG), PrE (GATA4 and SOX17), and members of the Hippo signalling pathway (YAP1, TEAD1 and TEAD4). We choose these markers based on previous observations in mouse embryos and single cell RNA-sequencing data of human embryos. After confocal imaging (LSM800, Zeiss), we analysed cell numbers within each lineage, different co-localization patterns and nuclear enrichment. MAIN RESULTS AND THE ROLE OF CHANCE We found that in human preimplantation embryos compaction is a heterogeneous process that takes place between the eight-cell to the 16-cell stages. Inner and outer cells are established at the end of the compaction process (C2) when the embryos contain up to six inner cells. Full apical p-ERM polarity is present in all outer cells of compacted C2 embryos. Co-localization of p-ERM and F-actin increases steadily from 42.2% to 100% of the outer cells, between C2 and B1 stages, while p-ERM polarizes before F-actin (P < 0.00001). Next, we sought to determine which factors specify the first lineage segregation event. We found that 19.5% of the nuclei stain positive for YAP1 at the start of compaction (C0) which increases to 56.1% during compaction (C1). At the C2 stage, 84.6% of polarized outer cells display high levels of nuclear YAP1 while it is absent in 75% of non-polarized inner cells. In general, throughout the B0–B3 blastocyst stages, polarized outer/TE cells are mainly positive for YAP1 and non-polarized inner/ICM cells are negative for YAP1. From the C1 stage onwards, before polarity is established, the TE marker GATA3 is detectable in YAP1 positive cells (11.6%), indicating that differentiation into TE cells can be initiated independently of polarity. Co-localization of YAP1 and GATA3 increases steadily in outer/TE cells (21.8% in C2 up to 97.3% in B3). Transcription factor TEAD4 is ubiquitously present throughout preimplantation development from the compacted stage onwards (C2–B6). TEAD1 displays a distinct pattern that coincides with YAP1/GATA3 co-localization in the outer cells. Most outer/TE cells throughout the B0–B3 blastocyst stages are positive for TEAD1 and YAP1. However, TEAD1 proteins are also detected in most nuclei of the inner/ICM cells of the blastocysts from cavitation onwards, but at visibly lower levels as compared to that in TE cells. In the ICM of B3 blastocysts, we found one main population of cells with NANOG+/SOX17−/GATA4− nuclei (89.1%), but exceptionally we found NANOG+/SOX17+/GATA4+ cells (0.8%). In seven out of nine B3 blastocysts, nuclear NANOG was found in all the ICM cells, supporting the previously reported hypothesis that PrE cells arise from EPI cells. Finally, to determine which factors specify the second lineage segregation event, we co-stained for TEAD1, YAP1, and GATA4. We identified two main ICM cell populations in B4–6 blastocysts: the EPI (negative for the three markers, 46.5%) and the PrE (positive for the three markers, 28.1%) cells. We conclude that TEAD1 and YAP1 co-localise in (precursor) TE and PrE cells, indicating that TEAD1/YAP1 signalling plays a role in the first and the second lineage segregation events. LIMITATIONS, REASONS FOR CAUTION In this descriptive study, we did not perform functional studies to investigate the role of TEAD1/YAP1 signalling during the first and second lineage segregation events. WIDER IMPLICATIONS OF THE FINDINGS Our detailed roadmap on polarization, compaction, position and lineage segregation events during human preimplantation development paves the way for further functional studies. Understanding the gene regulatory networks and signalling pathways involved in early embryogenesis could ultimately provide insights into why embryonic development is sometimes impaired and facilitate the establishment of guidelines for good practice in the IVF lab. STUDY FUNDING/COMPETING INTERESTS This work was financially supported by Wetenschappelijk Fonds Willy Gepts (WFWG) of the University Hospital UZ Brussel (WFWG142) and the Fonds Wetenschappelijk Onderzoek—Vlaanderen (FWO, G034514N). M.R. is doctoral fellow at the FWO. The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER N/A.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪的谷梦完成签到 ,获得积分10
2秒前
kehe!完成签到 ,获得积分0
4秒前
无名草0502完成签到 ,获得积分10
6秒前
luckyalias完成签到 ,获得积分10
9秒前
科研小白完成签到 ,获得积分10
21秒前
乐正怡完成签到 ,获得积分0
31秒前
yuanletong完成签到 ,获得积分10
34秒前
Cici的新长征完成签到 ,获得积分0
35秒前
冬叶完成签到,获得积分10
42秒前
SX0000完成签到 ,获得积分10
59秒前
Linson完成签到,获得积分10
1分钟前
1分钟前
ironsilica完成签到,获得积分10
1分钟前
nicheng完成签到 ,获得积分0
1分钟前
BINBIN完成签到 ,获得积分10
1分钟前
慕容雅柏完成签到 ,获得积分10
1分钟前
1分钟前
wefor完成签到 ,获得积分10
1分钟前
chcmy完成签到 ,获得积分10
1分钟前
蓝色白羊完成签到 ,获得积分10
1分钟前
zz完成签到 ,获得积分10
2分钟前
陆黑暗完成签到 ,获得积分10
2分钟前
搞怪的流沙完成签到 ,获得积分10
2分钟前
sunny完成签到 ,获得积分10
2分钟前
蓝意完成签到,获得积分10
2分钟前
Eric800824完成签到 ,获得积分10
2分钟前
文欣完成签到 ,获得积分10
2分钟前
wanghao完成签到 ,获得积分10
2分钟前
快乐的七宝完成签到 ,获得积分10
2分钟前
飞云完成签到 ,获得积分10
2分钟前
taoxz521完成签到 ,获得积分10
2分钟前
川藏客完成签到 ,获得积分10
2分钟前
富贵完成签到 ,获得积分10
3分钟前
su完成签到 ,获得积分10
3分钟前
wujiwuhui完成签到 ,获得积分10
3分钟前
科研狗完成签到 ,获得积分10
3分钟前
Gary完成签到 ,获得积分10
3分钟前
清净126完成签到 ,获得积分10
3分钟前
俞若枫发布了新的文献求助50
3分钟前
快乐小菜瓜完成签到 ,获得积分10
3分钟前
高分求助中
Exploring Mitochondrial Autophagy Dysregulation in Osteosarcoma: Its Implications for Prognosis and Targeted Therapy 4000
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
Evolution 1100
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Research Methods for Sports Studies 1000
Gerard de Lairesse : an artist between stage and studio 670
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 免疫学 病理 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2980295
求助须知:如何正确求助?哪些是违规求助? 2641388
关于积分的说明 7124852
捐赠科研通 2274285
什么是DOI,文献DOI怎么找? 1206476
版权声明 592005
科研通“疑难数据库(出版商)”最低求助积分说明 589477