清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Lineage segregation in human pre-implantation embryos is specified by YAP1 and TEAD1

谱系(遗传) 胚胎 生物 遗传学 男科 医学 基因
作者
Marius Regin,Wafaa Essahib,Andrej Demtschenko,Delphine Dewandre,Laurent David,Claudia Gerri,Kathy K. Niakan,Greta Verheyen,Herman Tournaye,J. Sterckx,Karen Sermon,H. Van de Velde
出处
期刊:Human Reproduction [Oxford University Press]
卷期号:38 (8): 1484-1498 被引量:28
标识
DOI:10.1093/humrep/dead107
摘要

Abstract STUDY QUESTION Which processes and transcription factors specify the first and second lineage segregation events during human preimplantation development? SUMMARY ANSWER Differentiation into trophectoderm (TE) cells can be initiated independently of polarity; moreover, TEAD1 and YAP1 co-localize in (precursor) TE and primitive endoderm (PrE) cells, suggesting a role in both the first and the second lineage segregation events. WHAT IS KNOWN ALREADY We know that polarity, YAP1/GATA3 signalling and phospholipase C signalling play a key role in TE initiation in compacted human embryos, however, little is known about the TEAD family of transcription factors that become activated by YAP1 and, especially, whether they play a role during epiblast (EPI) and PrE formation. In mouse embryos, polarized outer cells show nuclear TEAD4/YAP1 activity that upregulates Cdx2 and Gata3 expression while inner cells exclude YAP1 which upregulates Sox2 expression. The second lineage segregation event in mouse embryos is orchestrated by FGF4/FGFR2 signalling which could not be confirmed in human embryos; TEAD1/YAP1 signalling also plays a role during the establishment of mouse EPI cells. STUDY DESIGN, SIZE, DURATION Based on morphology, we set up a development timeline of 188 human preimplantation embryos between Day 4 and 6 post-fertilization (dpf). The compaction process was divided into three subgroups: embryos at the start (C0), during (C1), and at the end (C2) of, compaction. Inner cells were identified as cells that were entirely separated from the perivitelline space and enclosed by cellular contacts on all sides. The blastulation process was divided into six subgroups, starting with early blastocysts with sickle-cell shaped outer cells (B0) and further on, blastocysts with a cavity (B1). Full blastocysts (B2) showed a visible ICM and outer cells referred to as TE. Further expanded blastocysts (B3) had accumulated fluid and started to expand due to TE cell proliferation and zona pellucida (ZP) thinning. The blastocysts then significantly expanded further (B4) and started to hatch out of the ZP (B5) until they were fully hatched (B6). PARTICIPANTS/MATERIALS, SETTING, METHODS After informed consent and the expiration of the 5-year cryopreservation duration, 188 vitrified high quality eight-cell stage human embryos (3 dpf) were warmed and cultured until the required stages were reached. We also cultured 14 embryos that were created for research until the four- and eight-cell stage. The embryos were scored according to their developmental stage (C0–B6) displaying morphological key differences, rather than defining them according to their chronological age. They were fixed and immunostained for different combinations of cytoskeleton (F-actin), polarization (p-ERM), TE (GATA3), EPI (NANOG), PrE (GATA4 and SOX17), and members of the Hippo signalling pathway (YAP1, TEAD1 and TEAD4). We choose these markers based on previous observations in mouse embryos and single cell RNA-sequencing data of human embryos. After confocal imaging (LSM800, Zeiss), we analysed cell numbers within each lineage, different co-localization patterns and nuclear enrichment. MAIN RESULTS AND THE ROLE OF CHANCE We found that in human preimplantation embryos compaction is a heterogeneous process that takes place between the eight-cell to the 16-cell stages. Inner and outer cells are established at the end of the compaction process (C2) when the embryos contain up to six inner cells. Full apical p-ERM polarity is present in all outer cells of compacted C2 embryos. Co-localization of p-ERM and F-actin increases steadily from 42.2% to 100% of the outer cells, between C2 and B1 stages, while p-ERM polarizes before F-actin (P < 0.00001). Next, we sought to determine which factors specify the first lineage segregation event. We found that 19.5% of the nuclei stain positive for YAP1 at the start of compaction (C0) which increases to 56.1% during compaction (C1). At the C2 stage, 84.6% of polarized outer cells display high levels of nuclear YAP1 while it is absent in 75% of non-polarized inner cells. In general, throughout the B0–B3 blastocyst stages, polarized outer/TE cells are mainly positive for YAP1 and non-polarized inner/ICM cells are negative for YAP1. From the C1 stage onwards, before polarity is established, the TE marker GATA3 is detectable in YAP1 positive cells (11.6%), indicating that differentiation into TE cells can be initiated independently of polarity. Co-localization of YAP1 and GATA3 increases steadily in outer/TE cells (21.8% in C2 up to 97.3% in B3). Transcription factor TEAD4 is ubiquitously present throughout preimplantation development from the compacted stage onwards (C2–B6). TEAD1 displays a distinct pattern that coincides with YAP1/GATA3 co-localization in the outer cells. Most outer/TE cells throughout the B0–B3 blastocyst stages are positive for TEAD1 and YAP1. However, TEAD1 proteins are also detected in most nuclei of the inner/ICM cells of the blastocysts from cavitation onwards, but at visibly lower levels as compared to that in TE cells. In the ICM of B3 blastocysts, we found one main population of cells with NANOG+/SOX17−/GATA4− nuclei (89.1%), but exceptionally we found NANOG+/SOX17+/GATA4+ cells (0.8%). In seven out of nine B3 blastocysts, nuclear NANOG was found in all the ICM cells, supporting the previously reported hypothesis that PrE cells arise from EPI cells. Finally, to determine which factors specify the second lineage segregation event, we co-stained for TEAD1, YAP1, and GATA4. We identified two main ICM cell populations in B4–6 blastocysts: the EPI (negative for the three markers, 46.5%) and the PrE (positive for the three markers, 28.1%) cells. We conclude that TEAD1 and YAP1 co-localise in (precursor) TE and PrE cells, indicating that TEAD1/YAP1 signalling plays a role in the first and the second lineage segregation events. LIMITATIONS, REASONS FOR CAUTION In this descriptive study, we did not perform functional studies to investigate the role of TEAD1/YAP1 signalling during the first and second lineage segregation events. WIDER IMPLICATIONS OF THE FINDINGS Our detailed roadmap on polarization, compaction, position and lineage segregation events during human preimplantation development paves the way for further functional studies. Understanding the gene regulatory networks and signalling pathways involved in early embryogenesis could ultimately provide insights into why embryonic development is sometimes impaired and facilitate the establishment of guidelines for good practice in the IVF lab. STUDY FUNDING/COMPETING INTERESTS This work was financially supported by Wetenschappelijk Fonds Willy Gepts (WFWG) of the University Hospital UZ Brussel (WFWG142) and the Fonds Wetenschappelijk Onderzoek—Vlaanderen (FWO, G034514N). M.R. is doctoral fellow at the FWO. The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER N/A.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
研友_nxw2xL完成签到,获得积分10
4秒前
Jj7完成签到,获得积分0
4秒前
S1mple发布了新的文献求助10
6秒前
muriel完成签到,获得积分0
37秒前
如歌完成签到,获得积分10
38秒前
FIN发布了新的文献求助400
54秒前
S1mple完成签到,获得积分10
1分钟前
j7完成签到 ,获得积分10
1分钟前
2分钟前
闲人颦儿完成签到,获得积分0
2分钟前
2分钟前
赵英哲发布了新的文献求助10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
赵英哲完成签到,获得积分10
2分钟前
姚老表完成签到,获得积分10
3分钟前
阿绫完成签到 ,获得积分10
3分钟前
感动初蓝完成签到 ,获得积分10
3分钟前
科研通AI6应助Yportne采纳,获得10
3分钟前
李健的小迷弟应助Gryphon采纳,获得30
3分钟前
4分钟前
无与伦比完成签到 ,获得积分10
4分钟前
敞敞亮亮完成签到 ,获得积分10
4分钟前
4分钟前
Gryphon发布了新的文献求助30
4分钟前
善学以致用应助Raunio采纳,获得10
4分钟前
俊逸吐司完成签到 ,获得积分10
5分钟前
6分钟前
poki完成签到 ,获得积分10
6分钟前
BowieHuang应助科研通管家采纳,获得10
6分钟前
Alisha完成签到,获得积分10
6分钟前
爱喝红茶完成签到,获得积分10
6分钟前
6分钟前
RC发布了新的文献求助10
7分钟前
隐形曼青应助RC采纳,获得10
7分钟前
研友_8KKkb8发布了新的文献求助10
7分钟前
wangfaqing942完成签到 ,获得积分10
8分钟前
BowieHuang应助科研通管家采纳,获得10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590587
求助须知:如何正确求助?哪些是违规求助? 4674818
关于积分的说明 14795392
捐赠科研通 4633763
什么是DOI,文献DOI怎么找? 2532855
邀请新用户注册赠送积分活动 1501328
关于科研通互助平台的介绍 1468733