亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Surface-related multiple attenuation based on a self-supervised deep neural network with local wavefield characteristics

多重 衰减 曲面(拓扑) 振幅 算法 残余物 功能(生物学) 卷积神经网络 减法 人工神经网络 数学 计算机科学 人工智能 光学 物理 几何学 算术 进化生物学 生物
作者
Kunxi Wang,Tianyue Hu,Bangliu Zhao,Shangxu Wang
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (5): V387-V402 被引量:5
标识
DOI:10.1190/geo2022-0599.1
摘要

Multiple suppression is a very important step in seismic data processing. To suppress surface-related multiples, we develop a self-supervised deep neural network method based on a local wavefield characteristic loss function (SDNN-LWCLF). The first and second input data and the output data of the self-supervised deep neural network (SDNN) are the predicted surface-related multiples, the full-wavefield data, and the estimated true surface-related multiples, respectively. The role of the SDNN is to replace the convolutional filter part of adaptive subtraction. Although there are differences in amplitudes and phases between the predicted and true surface-related multiples, the predicted surface-related multiples correspond kinematically to the true surface-related multiples and can be mapped to the estimated true surface-related multiples by the SDNN. The SDNN-LWCLF uses a local wavefield characteristic (LWC) loss function with physical properties to constrain the nonlinear optimization process. The LWC loss function is composed of the mean-absolute-error (MAE) and local normalized crosscorrelation (LNCC) loss functions. LNCC can measure the local similarity between the estimated multiples and the estimated primaries. By minimizing the LWC loss function, the MAE loss function corrects amplitudes and phases of the predicted surface-related multiples to their true values, and the LNCC loss function automatically checks and reduces the leaked multiples and residual primaries in the estimated true surface-related multiples. Our SDNN-LWCLF method does not need label data, such as true primaries and true surface-related multiples, which are usually unavailable in real-world applications. Therefore, the SDNN-LWCLF solves the problem of missing training data. Synthetic and field data examples demonstrate that our method can well suppress the surface-related multiples, and its suppression effect is better than the traditional L1-norm adaptive subtraction method and the SDNN method based on only the MAE loss function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mashibeo完成签到,获得积分10
4秒前
fangea23完成签到,获得积分10
21秒前
1分钟前
stokis03完成签到 ,获得积分0
1分钟前
2分钟前
孤独梦安完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
熊熊发布了新的文献求助10
3分钟前
zhang完成签到,获得积分10
3分钟前
熊熊完成签到,获得积分10
3分钟前
吃点水果保护局完成签到 ,获得积分10
4分钟前
4分钟前
CodeCraft应助zhang采纳,获得10
5分钟前
山猪吃细糠完成签到 ,获得积分10
5分钟前
胡呵呵发布了新的文献求助10
5分钟前
6分钟前
7分钟前
7分钟前
zhang发布了新的文献求助10
7分钟前
LMY1411完成签到,获得积分10
8分钟前
gszy1975完成签到,获得积分10
8分钟前
8分钟前
Lin完成签到,获得积分10
9分钟前
zl发布了新的文献求助10
9分钟前
zl完成签到,获得积分10
9分钟前
希望天下0贩的0应助jason采纳,获得10
9分钟前
spark810发布了新的文献求助200
10分钟前
jason完成签到,获得积分10
10分钟前
机灵自中完成签到,获得积分10
10分钟前
龙龙发布了新的文献求助30
10分钟前
zhang发布了新的文献求助10
10分钟前
zhang发布了新的文献求助10
11分钟前
胡呵呵发布了新的文献求助10
11分钟前
11分钟前
科研通AI2S应助胡呵呵采纳,获得10
11分钟前
12分钟前
坚强心锁完成签到,获得积分10
12分钟前
13分钟前
13分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229680
求助须知:如何正确求助?哪些是违规求助? 2877246
关于积分的说明 8198587
捐赠科研通 2544707
什么是DOI,文献DOI怎么找? 1374581
科研通“疑难数据库(出版商)”最低求助积分说明 646996
邀请新用户注册赠送积分活动 621808