Surface-related multiple attenuation based on a self-supervised deep neural network with local wavefield characteristics

多重 衰减 曲面(拓扑) 振幅 算法 残余物 功能(生物学) 卷积神经网络 减法 人工神经网络 数学 计算机科学 人工智能 光学 物理 几何学 算术 进化生物学 生物
作者
Kunxi Wang,Tianyue Hu,Bangliu Zhao,Shangxu Wang
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (5): V387-V402 被引量:5
标识
DOI:10.1190/geo2022-0599.1
摘要

Multiple suppression is a very important step in seismic data processing. To suppress surface-related multiples, we develop a self-supervised deep neural network method based on a local wavefield characteristic loss function (SDNN-LWCLF). The first and second input data and the output data of the self-supervised deep neural network (SDNN) are the predicted surface-related multiples, the full-wavefield data, and the estimated true surface-related multiples, respectively. The role of the SDNN is to replace the convolutional filter part of adaptive subtraction. Although there are differences in amplitudes and phases between the predicted and true surface-related multiples, the predicted surface-related multiples correspond kinematically to the true surface-related multiples and can be mapped to the estimated true surface-related multiples by the SDNN. The SDNN-LWCLF uses a local wavefield characteristic (LWC) loss function with physical properties to constrain the nonlinear optimization process. The LWC loss function is composed of the mean-absolute-error (MAE) and local normalized crosscorrelation (LNCC) loss functions. LNCC can measure the local similarity between the estimated multiples and the estimated primaries. By minimizing the LWC loss function, the MAE loss function corrects amplitudes and phases of the predicted surface-related multiples to their true values, and the LNCC loss function automatically checks and reduces the leaked multiples and residual primaries in the estimated true surface-related multiples. Our SDNN-LWCLF method does not need label data, such as true primaries and true surface-related multiples, which are usually unavailable in real-world applications. Therefore, the SDNN-LWCLF solves the problem of missing training data. Synthetic and field data examples demonstrate that our method can well suppress the surface-related multiples, and its suppression effect is better than the traditional L1-norm adaptive subtraction method and the SDNN method based on only the MAE loss function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱学习发布了新的文献求助10
刚刚
orixero应助selfevidbet采纳,获得30
1秒前
温言完成签到,获得积分10
1秒前
思源应助Neko采纳,获得10
1秒前
Jasper应助通~采纳,获得10
2秒前
2秒前
wary完成签到,获得积分10
2秒前
2秒前
11发布了新的文献求助10
3秒前
4秒前
张小敏发布了新的文献求助10
4秒前
lt_zyk完成签到,获得积分10
5秒前
5秒前
wary发布了新的文献求助10
6秒前
清爽老九完成签到,获得积分10
6秒前
Orange应助张鱼小丸子采纳,获得10
6秒前
7秒前
8秒前
雨夜星空完成签到,获得积分10
8秒前
饱满的半青完成签到 ,获得积分10
9秒前
9秒前
务实盼海发布了新的文献求助10
9秒前
Jouleken完成签到,获得积分10
9秒前
10秒前
zq00完成签到,获得积分10
10秒前
10秒前
斯文败类应助独木舟采纳,获得10
10秒前
易哒哒完成签到,获得积分10
10秒前
CCL应助QXS采纳,获得50
11秒前
大方安白完成签到,获得积分10
11秒前
Xxaaa完成签到,获得积分20
11秒前
张小敏完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
科研通AI2S应助Zhong采纳,获得10
13秒前
yidashi完成签到,获得积分10
13秒前
Kelvin.Tsi完成签到 ,获得积分10
13秒前
Island发布了新的文献求助10
14秒前
hu970发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762