Surface-related multiple attenuation based on a self-supervised deep neural network with local wavefield characteristics

多重 衰减 曲面(拓扑) 振幅 算法 残余物 功能(生物学) 卷积神经网络 减法 人工神经网络 数学 计算机科学 人工智能 光学 物理 几何学 算术 进化生物学 生物
作者
Kunxi Wang,Tianyue Hu,Bangliu Zhao,Shangxu Wang
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (5): V387-V402 被引量:5
标识
DOI:10.1190/geo2022-0599.1
摘要

Multiple suppression is a very important step in seismic data processing. To suppress surface-related multiples, we develop a self-supervised deep neural network method based on a local wavefield characteristic loss function (SDNN-LWCLF). The first and second input data and the output data of the self-supervised deep neural network (SDNN) are the predicted surface-related multiples, the full-wavefield data, and the estimated true surface-related multiples, respectively. The role of the SDNN is to replace the convolutional filter part of adaptive subtraction. Although there are differences in amplitudes and phases between the predicted and true surface-related multiples, the predicted surface-related multiples correspond kinematically to the true surface-related multiples and can be mapped to the estimated true surface-related multiples by the SDNN. The SDNN-LWCLF uses a local wavefield characteristic (LWC) loss function with physical properties to constrain the nonlinear optimization process. The LWC loss function is composed of the mean-absolute-error (MAE) and local normalized crosscorrelation (LNCC) loss functions. LNCC can measure the local similarity between the estimated multiples and the estimated primaries. By minimizing the LWC loss function, the MAE loss function corrects amplitudes and phases of the predicted surface-related multiples to their true values, and the LNCC loss function automatically checks and reduces the leaked multiples and residual primaries in the estimated true surface-related multiples. Our SDNN-LWCLF method does not need label data, such as true primaries and true surface-related multiples, which are usually unavailable in real-world applications. Therefore, the SDNN-LWCLF solves the problem of missing training data. Synthetic and field data examples demonstrate that our method can well suppress the surface-related multiples, and its suppression effect is better than the traditional L1-norm adaptive subtraction method and the SDNN method based on only the MAE loss function.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BENpao123完成签到 ,获得积分10
刚刚
时光友岸完成签到,获得积分10
1秒前
HonestLiang发布了新的文献求助10
1秒前
木木诺玉完成签到,获得积分10
1秒前
lilyccc完成签到,获得积分10
2秒前
2秒前
博慧完成签到 ,获得积分10
2秒前
橙子完成签到,获得积分10
2秒前
达达发布了新的文献求助10
2秒前
英姑应助niannian采纳,获得10
3秒前
林菲菲完成签到,获得积分10
3秒前
在水一方应助阳光的晓刚采纳,获得10
3秒前
彭于晏完成签到,获得积分10
4秒前
饼饼完成签到,获得积分10
4秒前
infane完成签到,获得积分10
4秒前
4秒前
FashionBoy应助雪白灵槐采纳,获得10
4秒前
5秒前
5秒前
LIKO完成签到,获得积分10
5秒前
jiejiejie完成签到,获得积分10
6秒前
1021完成签到,获得积分10
6秒前
6秒前
6秒前
FashionBoy应助无限的慕凝采纳,获得10
6秒前
ding应助yuu采纳,获得10
7秒前
草莓派完成签到,获得积分10
8秒前
淡然白安发布了新的文献求助30
9秒前
周雪妍完成签到,获得积分10
10秒前
111发布了新的文献求助10
10秒前
求索完成签到 ,获得积分10
10秒前
柚子完成签到,获得积分10
10秒前
光亮萤完成签到,获得积分10
10秒前
扬帆起航完成签到 ,获得积分10
10秒前
赤侯完成签到,获得积分10
11秒前
小张爱学习完成签到,获得积分10
11秒前
LuckyGuy完成签到,获得积分10
11秒前
12秒前
无限小霜完成签到,获得积分10
12秒前
stargazer完成签到,获得积分10
12秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3081744
求助须知:如何正确求助?哪些是违规求助? 2734831
关于积分的说明 7534536
捐赠科研通 2384276
什么是DOI,文献DOI怎么找? 1264252
科研通“疑难数据库(出版商)”最低求助积分说明 612606
版权声明 597600