Surface-related multiple attenuation based on a self-supervised deep neural network with local wavefield characteristics

多重 衰减 曲面(拓扑) 振幅 算法 残余物 功能(生物学) 卷积神经网络 减法 人工神经网络 数学 计算机科学 人工智能 光学 物理 几何学 算术 进化生物学 生物
作者
Kunxi Wang,Tianyue Hu,Bangliu Zhao,Shangxu Wang
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (5): V387-V402 被引量:5
标识
DOI:10.1190/geo2022-0599.1
摘要

Multiple suppression is a very important step in seismic data processing. To suppress surface-related multiples, we develop a self-supervised deep neural network method based on a local wavefield characteristic loss function (SDNN-LWCLF). The first and second input data and the output data of the self-supervised deep neural network (SDNN) are the predicted surface-related multiples, the full-wavefield data, and the estimated true surface-related multiples, respectively. The role of the SDNN is to replace the convolutional filter part of adaptive subtraction. Although there are differences in amplitudes and phases between the predicted and true surface-related multiples, the predicted surface-related multiples correspond kinematically to the true surface-related multiples and can be mapped to the estimated true surface-related multiples by the SDNN. The SDNN-LWCLF uses a local wavefield characteristic (LWC) loss function with physical properties to constrain the nonlinear optimization process. The LWC loss function is composed of the mean-absolute-error (MAE) and local normalized crosscorrelation (LNCC) loss functions. LNCC can measure the local similarity between the estimated multiples and the estimated primaries. By minimizing the LWC loss function, the MAE loss function corrects amplitudes and phases of the predicted surface-related multiples to their true values, and the LNCC loss function automatically checks and reduces the leaked multiples and residual primaries in the estimated true surface-related multiples. Our SDNN-LWCLF method does not need label data, such as true primaries and true surface-related multiples, which are usually unavailable in real-world applications. Therefore, the SDNN-LWCLF solves the problem of missing training data. Synthetic and field data examples demonstrate that our method can well suppress the surface-related multiples, and its suppression effect is better than the traditional L1-norm adaptive subtraction method and the SDNN method based on only the MAE loss function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fan发布了新的文献求助10
刚刚
木木完成签到,获得积分10
1秒前
1秒前
楼小柚完成签到,获得积分10
2秒前
zhangsir完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
4秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
Don完成签到 ,获得积分10
6秒前
初学者发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
maomao发布了新的文献求助10
8秒前
内向寒云发布了新的文献求助10
9秒前
10秒前
11秒前
diedeline完成签到 ,获得积分10
11秒前
11秒前
mmt发布了新的文献求助10
12秒前
百宝发布了新的文献求助10
12秒前
13秒前
WD发布了新的文献求助10
13秒前
15秒前
15秒前
脑洞疼应助邹长飞采纳,获得10
15秒前
科研通AI5应助xr采纳,获得10
16秒前
17秒前
19秒前
何处芳歇发布了新的文献求助10
20秒前
结实夜雪完成签到,获得积分10
20秒前
20秒前
21秒前
BANG发布了新的文献求助10
22秒前
SYLH应助单纯的文龙采纳,获得50
23秒前
CJ发布了新的文献求助20
23秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979779
求助须知:如何正确求助?哪些是违规求助? 3523794
关于积分的说明 11218782
捐赠科研通 3261278
什么是DOI,文献DOI怎么找? 1800526
邀请新用户注册赠送积分活动 879143
科研通“疑难数据库(出版商)”最低求助积分说明 807182