Predicting dropout in Higher Education across borders

辍学(神经网络) 背景(考古学) 高等教育 政治学 动作(物理) 心理学 社会学 地理 计算机科学 物理 考古 量子力学 机器学习 法学
作者
Melisa Diaz Lema,Melvin Vooren,Marta Cannistrà,Chris van Klaveren,Tommaso Agasisti,Ilja Cornelisz
出处
期刊:Studies in Higher Education [Informa]
卷期号:49 (1): 141-156 被引量:4
标识
DOI:10.1080/03075079.2023.2224818
摘要

ABSTRACTABSTRACTStudy success in Higher Education is of primary importance in the European policy agenda. Yet, given the diverse educational landscape across countries and institutions, more coordinated action is needed to gain a more solid knowledge of the dropout phenomenon. This study aims to gain a better insight into students' dropout based on an integrated comparative study of two universities located in two different European countries: Politecnico di Milano (Italy) and Vrije Universiteit Amsterdam (the Netherlands). This research aims at assessing whether the factors affecting dropout are similar in the Italian and the Dutch contexts by testing the predictive capacity of ad-hoc models trained in other university-country settings at three different stages of the student's university journey: (i) enrolment, (ii) end of the first semester, and (iii) end of the first year. Results show that the predictive capacity of models is exchangeable across different contexts, and it improves dramatically once data on university performance becomes available. We find that the models trained in the Dutch context have a better ability to identify dropouts in the Italian context than the other way around. Models trained on Dutch data allow us to better understand the relationship between educational credits obtained, the most important variable across models, and students' dropout. This study contributes to creating a European common arena for discussing Higher Education success issues.KEYWORDS: Student dropoutHigher Educationpredictive modelingcross-country comparisonmodel exchangeability AcknowledgementsWe thank the 'Data Analytics for Institutional Support' of PoliMi and 'Student en Onderwijszaken' of the Vrije Universiteit Amsterdam for facilitating access to the University register data, and for overall support throughout the research process. These institutional units leverage the available (administrative) datasets of each university to support internal decision-making. All the eventual errors are our sole responsibility.Disclosure statementNo potential conflict of interest was reported by the author(s).Correction StatementThis article has been corrected with minor changes. These changes do not impact the academic content of the article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助Cloud采纳,获得10
刚刚
2秒前
3秒前
等待戈多完成签到,获得积分10
4秒前
4秒前
谭抗完成签到,获得积分10
4秒前
lhhh完成签到,获得积分10
4秒前
asdadadad发布了新的文献求助10
5秒前
马乐天完成签到,获得积分20
5秒前
Carol_Wang完成签到,获得积分10
7秒前
7秒前
思源应助梨花雨凉采纳,获得10
7秒前
dd完成签到,获得积分10
8秒前
谭抗发布了新的文献求助10
9秒前
马乐天发布了新的文献求助10
10秒前
冷酷丹翠完成签到 ,获得积分10
10秒前
11秒前
刘雨森完成签到 ,获得积分10
12秒前
蒲公英的约定完成签到,获得积分10
12秒前
12秒前
gentledragon完成签到,获得积分20
12秒前
13秒前
Leo完成签到,获得积分10
15秒前
15秒前
Cassie发布了新的文献求助10
15秒前
结实曼凡发布了新的文献求助10
16秒前
杨秋月发布了新的文献求助10
17秒前
文静幻枫完成签到 ,获得积分10
18秒前
18秒前
asdadadad发布了新的文献求助30
18秒前
gentledragon发布了新的文献求助10
19秒前
19秒前
yangyang完成签到,获得积分10
19秒前
19秒前
nn完成签到 ,获得积分10
19秒前
20秒前
Yvette2024完成签到,获得积分10
20秒前
Moonflower发布了新的文献求助10
20秒前
Lucas应助怡宝1223采纳,获得10
21秒前
科目三应助Cassie采纳,获得10
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
The SAGE Handbook of Qualitative Research 800
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135113
求助须知:如何正确求助?哪些是违规求助? 2786095
关于积分的说明 7775189
捐赠科研通 2441915
什么是DOI,文献DOI怎么找? 1298256
科研通“疑难数据库(出版商)”最低求助积分说明 625108
版权声明 600839