Shared learning from a physiologically based pharmacokinetic modeling strategy for human pharmacokinetics prediction through retrospective analysis of Genentech compounds

基于生理学的药代动力学模型 药代动力学 药理学 体内 化学 计算生物学 医学 生物 生物技术
作者
Jialin Mao,Fang Ma,Jesse Yu,Tom De Bruyn,Miaoran Ning,Christine M. Bowman,Yuan Chen
出处
期刊:Biopharmaceutics & Drug Disposition [Wiley]
卷期号:44 (4): 315-334 被引量:10
标识
DOI:10.1002/bdd.2359
摘要

Abstract The quantitative prediction of human pharmacokinetics (PK) including the PK profile and key PK parameters are critical for early drug development decisions, successful phase I clinical trials, and the establishment of a range of doses to enable phase II clinical dose selection. Here, we describe an approach employing physiologically based pharmacokinetic (PBPK) modeling (Simcyp) to predict human PK and to validate its performance through retrospective analysis of 18 Genentech compounds for which clinical data are available. In short, physicochemical parameters and in vitro data for preclinical species were integrated using PBPK modeling to predict the in vivo PK observed in mouse, rat, dog, and cynomolgus monkey. Through this process, the in vitro to in vivo extrapolation (IVIVE) was determined and then incorporated into PBPK modeling in order to predict human PK. Overall, the prediction obtained using this PBPK‐IVIVE approach captured the observed human PK profiles of the compounds from the dataset well. The predicted C max was within 2‐fold of the observed C max for 94% of the compounds while the predicted area under the curve (AUC) was within 2‐fold of the observed AUC for 72% of the compounds. Additionally, important IVIVE trends were revealed through this investigation, including application of scaling factors determined from preclinical IVIVE to human PK prediction for each molecule. Based upon the analysis, this PBPK‐based approach now serves as a practical strategy for human PK prediction at the candidate selection stage at Genentech.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
00000完成签到,获得积分10
3秒前
自然妙竹完成签到 ,获得积分10
6秒前
7秒前
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
斯文败类应助sudaxia100采纳,获得10
9秒前
AhhHuang完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
Ava应助悦耳傲儿采纳,获得10
10秒前
ChenXY完成签到,获得积分10
13秒前
严笑容发布了新的文献求助30
14秒前
严笑容发布了新的文献求助10
14秒前
严笑容发布了新的文献求助30
14秒前
严笑容发布了新的文献求助30
14秒前
严笑容发布了新的文献求助30
14秒前
严笑容发布了新的文献求助30
14秒前
严笑容发布了新的文献求助30
14秒前
严笑容发布了新的文献求助30
14秒前
严笑容发布了新的文献求助30
14秒前
孙波完成签到,获得积分10
15秒前
二猫发布了新的文献求助10
15秒前
16秒前
好运连连完成签到 ,获得积分10
18秒前
18秒前
18秒前
JuJu完成签到,获得积分10
19秒前
深情安青应助孙波采纳,获得10
19秒前
夏惋清完成签到 ,获得积分0
20秒前
YH完成签到,获得积分10
20秒前
yyyyy完成签到,获得积分10
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737471
求助须知:如何正确求助?哪些是违规求助? 3281244
关于积分的说明 10023902
捐赠科研通 2997978
什么是DOI,文献DOI怎么找? 1644908
邀请新用户注册赠送积分活动 782421
科研通“疑难数据库(出版商)”最低求助积分说明 749792