A review of neurophysiological effects and efficiency of waveform parameters in deep brain stimulation

脑深部刺激 神经调节 神经刺激 神经科学 医学 神经生理学 脑刺激 物理医学与康复 刺激 帕金森病 疾病 心理学 内科学
作者
Zachary Gilbert,Xenos Mason,Rinu Sebastian,Austin M. Tang,Roberto Martin Del Campo-Vera,Kuang-Hsuan Chen,Andrea Leonor,Xiecheng Shao,Emiliano Tabarsi,Ryan Chung,Shivani Sundaram,Alexandra Kammen,Jonathan Cavaleri,Angad S. Gogia,Christi Heck,George Nune,Charles Y. Liu,Spencer Kellis,Brian Lee
出处
期刊:Clinical Neurophysiology [Elsevier]
卷期号:152: 93-111 被引量:14
标识
DOI:10.1016/j.clinph.2023.04.007
摘要

Neurostimulation has diverse clinical applications and potential as a treatment for medically refractory movement disorders, epilepsy, and other neurological disorders. However, the parameters used to program electrodes-polarity, pulse width, amplitude, and frequency-and how they are adjusted have remained largely untouched since the 1970 s. This review summarizes the state-of-the-art in Deep Brain Stimulation (DBS) and highlights the need for further research to uncover the physiological mechanisms of neurostimulation. We focus on studies that reveal the potential for clinicians to use waveform parameters to selectively stimulate neural tissue for therapeutic benefit, while avoiding activating tissue associated with adverse effects. DBS uses cathodic monophasic rectangular pulses with passive recharging in clinical practice to treat neurological conditions such as Parkinson's Disease. However, research has shown that stimulation efficiency can be improved, and side effects reduced, through modulating parameters and adding novel waveform properties. These developments can prolong implantable pulse generator lifespan, reducing costs and surgery-associated risks. Waveform parameters can stimulate neurons based on axon orientation and intrinsic structural properties, providing clinicians with more precise targeting of neural pathways. These findings could expand the spectrum of diseases treatable with neuromodulation and improve patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狮子座发布了新的文献求助10
1秒前
打工人完成签到,获得积分10
2秒前
小云发布了新的文献求助30
2秒前
小团子完成签到,获得积分10
2秒前
想毕业的第n天完成签到,获得积分10
3秒前
lalala应助科研小虫采纳,获得10
3秒前
一杯双皮奶完成签到,获得积分10
3秒前
我就是我完成签到,获得积分10
3秒前
3秒前
cs完成签到 ,获得积分10
4秒前
小李博士发布了新的文献求助10
5秒前
stkp完成签到,获得积分10
5秒前
魔幻的莺关注了科研通微信公众号
6秒前
wanci应助Zpk采纳,获得10
6秒前
月月呀完成签到,获得积分10
7秒前
研友_ZAe4qZ完成签到,获得积分20
7秒前
小云完成签到,获得积分10
8秒前
Joy发布了新的文献求助10
8秒前
好耶发布了新的文献求助10
9秒前
10秒前
乐正三问完成签到,获得积分10
11秒前
12秒前
在木星完成签到,获得积分10
12秒前
乐乐应助xz采纳,获得10
12秒前
爆米花应助研友_ZAe4qZ采纳,获得10
13秒前
赘婿应助wtbxsjy采纳,获得10
13秒前
所所应助外向愫采纳,获得10
13秒前
努力加油煤老八完成签到 ,获得积分10
14秒前
14秒前
14秒前
14秒前
有魅力老三完成签到 ,获得积分10
15秒前
晓晓雪发布了新的文献求助10
15秒前
15秒前
Kru发布了新的文献求助10
15秒前
16秒前
酷波er应助冷酷蛋挞采纳,获得10
16秒前
16秒前
诗诗发布了新的文献求助10
17秒前
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309071
求助须知:如何正确求助?哪些是违规求助? 2942413
关于积分的说明 8508810
捐赠科研通 2617447
什么是DOI,文献DOI怎么找? 1430137
科研通“疑难数据库(出版商)”最低求助积分说明 664044
邀请新用户注册赠送积分活动 649236