Optimization of dropping process of Xuesaitong dropping pills based on quality by design concept and machine vision

关键质量属性 过程(计算) 一致性(知识库) 设计质量 实验设计 计算机科学 质量(理念) 可靠性工程 Box-Behnken设计 人工智能 机器学习 数学 工程类 统计 响应面法 运营管理 哲学 认识论 下游(制造业) 操作系统
作者
Yizhe Hou,Xi Wang,Zhiyong Zhang,Jiaheng Wu,Xiang Cai,Pian Li,Zheng Li,Wenlong Li
出处
期刊:Drug Development and Industrial Pharmacy [Taylor & Francis]
卷期号:49 (4): 328-340
标识
DOI:10.1080/03639045.2023.2212065
摘要

The drooping process of the Xuesaitong dropping pills (XDPs) was optimized based on quality by design concept. Meanwhile, a machine vision (MV) technology was creatively introduced in this study to predict the critical quality attributes (CQAs) rapidly and accurately.This study improves the understanding of dropping process, and has reference value for the guidance of pharmaceutical process research and industrial production.The study mainly consisted of three stages: the first stage involved the prediction model to establish and evaluate the CQAs, and the second stage involved assessing the quantitative relationships between critical process parameters (CPPs) and CQAs by the mathematical models that were established through the Box-Behnken experimental design. Finally, a probability-based design space for the dropping process was calculated and verified according to the qualification criteria of each quality attribute.The results show that the prediction accuracy of the random forest (RF) model was high and met the analysis requirements, and the CQAs of dropping pills can meet the standard by running in the design space.The MV technology developed in this study can be applied to the optimization process of the XDPs. In addition, the operation in the design space can not only ensure the quality of XDPs to meet the criteria, but also help to improve the consistency of XDPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伶俐绮发布了新的文献求助10
刚刚
pluto应助小小鱼采纳,获得10
刚刚
Orange应助麦子采纳,获得10
1秒前
落寞依珊应助权志龙采纳,获得20
2秒前
2秒前
豆豆发布了新的文献求助10
3秒前
百宝发布了新的文献求助10
3秒前
神勇的天菱完成签到,获得积分10
5秒前
kk发布了新的文献求助10
5秒前
顺利的雁发布了新的文献求助10
8秒前
研友_ZzrWKZ完成签到 ,获得积分10
9秒前
11秒前
爆米花应助豆豆采纳,获得10
12秒前
Jamie2完成签到,获得积分10
12秒前
13秒前
钰宁完成签到,获得积分10
16秒前
realityjunky完成签到,获得积分10
16秒前
17秒前
18秒前
此晴可待发布了新的文献求助10
18秒前
19秒前
19秒前
SSS完成签到,获得积分10
20秒前
昏睡的蟠桃发布了新的文献求助100
21秒前
22秒前
深情安青应助health采纳,获得10
22秒前
lmy完成签到,获得积分10
22秒前
张俊敏发布了新的文献求助10
23秒前
考研小白发布了新的文献求助10
23秒前
zt1812431172完成签到,获得积分10
24秒前
24秒前
Owen应助幸福果汁采纳,获得10
26秒前
26秒前
Ava应助高高紫烟采纳,获得10
26秒前
26秒前
嘟嘟噜发布了新的文献求助10
28秒前
百宝完成签到,获得积分10
29秒前
LLX123完成签到 ,获得积分10
30秒前
sdsa发布了新的文献求助10
31秒前
32秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992840
求助须知:如何正确求助?哪些是违规求助? 3533621
关于积分的说明 11263330
捐赠科研通 3273416
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809619