Safe-State Enhancement Method for Autonomous Driving via Direct Hierarchical Reinforcement Learning

强化学习 马尔可夫决策过程 计算机科学 约束(计算机辅助设计) 国家(计算机科学) 过程(计算) 人工智能 马尔可夫过程 工程类 算法 数学 机械工程 统计 操作系统
作者
Ziqing Gu,Lingping Gao,Haitong Ma,Shengbo Eben Li,Sifa Zheng,Wei Jing,Junbo Chen
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (9): 9966-9983 被引量:5
标识
DOI:10.1109/tits.2023.3271642
摘要

Reinforcement learning (RL) has shown excellent performance in the sequential decision-making problem, where safety in the form of state constraints is of great significance in the design and application of RL. Simple constrained end-to-end RL methods might lead to significant failure in a complex system like autonomous vehicles. In contrast, some hierarchical RL (HRL) methods generate driving goals directly, which could be closely combined with motion planning. With safety requirements, some safe-enhanced RL methods add post-processing modules to avoid unsafe goals or achieve expectation-based safety, which accepts the existence of unsafe states and allows some violations of safe constraints. However, ensuring state safety is vital for autonomous vehicles. Therefore, this paper proposes a state-based safety enhancement method for autonomous driving via direct hierarchical reinforcement learning. Finally, we design a constrained reinforcement learner based on the State-based Constrained Markov Decision Process (SCMDP), where a learnable safety module could adjust the constraint strength adaptively. We integrate a dynamic module in the policy training and generate future goals considering safety, temporal-spatial continuity, and dynamic feasibility, which could eliminate dependence on the prior model. Simulations in the typical highway scenes with uncertainties show that the proposed method has better training performance, higher driving safety in interactive scenes, more decision intelligence in traffic congestions, and better economic driving ability on roads with changing slopes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wangjf完成签到 ,获得积分10
刚刚
刚刚
wuming完成签到,获得积分10
刚刚
刚刚
1秒前
斯文败类应助直率不乐采纳,获得10
1秒前
mahliya完成签到,获得积分10
1秒前
1秒前
猪丽叶完成签到,获得积分10
1秒前
1秒前
DDDDDDDj发布了新的文献求助10
1秒前
喜久福发布了新的文献求助10
1秒前
星辰大海应助song采纳,获得10
2秒前
SciGPT应助你快睡吧采纳,获得10
2秒前
秦照荃发布了新的文献求助10
2秒前
艺术家完成签到,获得积分10
2秒前
自然鸽子完成签到,获得积分10
2秒前
wangping发布了新的文献求助10
3秒前
邓佳鑫Alan应助peng采纳,获得10
3秒前
蓝景轩辕发布了新的文献求助50
4秒前
后来发布了新的文献求助10
5秒前
专注以筠发布了新的文献求助10
5秒前
研友_8DAv0L发布了新的文献求助10
6秒前
科研任你行完成签到,获得积分10
6秒前
李健应助geold采纳,获得10
6秒前
小郭发布了新的文献求助10
7秒前
glacial发布了新的文献求助20
7秒前
完美世界应助ZMR121121采纳,获得10
7秒前
7秒前
陌上之心发布了新的文献求助30
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
令尊是我犬子完成签到 ,获得积分10
8秒前
期辰关注了科研通微信公众号
8秒前
贝塔完成签到 ,获得积分10
8秒前
8秒前
8秒前
Hello应助Sylar采纳,获得10
8秒前
9秒前
科研通AI2S应助zhp采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646155
求助须知:如何正确求助?哪些是违规求助? 4770208
关于积分的说明 15033403
捐赠科研通 4804753
什么是DOI,文献DOI怎么找? 2569195
邀请新用户注册赠送积分活动 1526252
关于科研通互助平台的介绍 1485762