Safe-State Enhancement Method for Autonomous Driving via Direct Hierarchical Reinforcement Learning

强化学习 马尔可夫决策过程 计算机科学 约束(计算机辅助设计) 国家(计算机科学) 过程(计算) 人工智能 马尔可夫过程 工程类 算法 数学 机械工程 统计 操作系统
作者
Ziqing Gu,Lingping Gao,Haitong Ma,Shengbo Eben Li,Sifa Zheng,Wei Jing,Junbo Chen
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (9): 9966-9983 被引量:5
标识
DOI:10.1109/tits.2023.3271642
摘要

Reinforcement learning (RL) has shown excellent performance in the sequential decision-making problem, where safety in the form of state constraints is of great significance in the design and application of RL. Simple constrained end-to-end RL methods might lead to significant failure in a complex system like autonomous vehicles. In contrast, some hierarchical RL (HRL) methods generate driving goals directly, which could be closely combined with motion planning. With safety requirements, some safe-enhanced RL methods add post-processing modules to avoid unsafe goals or achieve expectation-based safety, which accepts the existence of unsafe states and allows some violations of safe constraints. However, ensuring state safety is vital for autonomous vehicles. Therefore, this paper proposes a state-based safety enhancement method for autonomous driving via direct hierarchical reinforcement learning. Finally, we design a constrained reinforcement learner based on the State-based Constrained Markov Decision Process (SCMDP), where a learnable safety module could adjust the constraint strength adaptively. We integrate a dynamic module in the policy training and generate future goals considering safety, temporal-spatial continuity, and dynamic feasibility, which could eliminate dependence on the prior model. Simulations in the typical highway scenes with uncertainties show that the proposed method has better training performance, higher driving safety in interactive scenes, more decision intelligence in traffic congestions, and better economic driving ability on roads with changing slopes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
loveyouxkkt应助韦老虎采纳,获得30
刚刚
小蘑菇应助含糊采纳,获得10
1秒前
深情安青应助狂野觅云采纳,获得10
1秒前
鉴定为寄发布了新的文献求助30
2秒前
夜白举报无奈的浩宇求助涉嫌违规
2秒前
2秒前
3秒前
跳跃尔容发布了新的文献求助10
3秒前
青山发布了新的文献求助26
3秒前
3秒前
Agernon应助韦老虎采纳,获得10
4秒前
沉默沛岚发布了新的文献求助30
4秒前
4秒前
程程发布了新的文献求助10
4秒前
晨安发布了新的文献求助10
5秒前
5秒前
橙子完成签到,获得积分10
5秒前
5秒前
DrYang发布了新的文献求助10
5秒前
6秒前
哈哈大笑完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
特兰克斯发布了新的文献求助10
8秒前
危机的尔蝶完成签到,获得积分10
8秒前
mcsmdxs发布了新的文献求助10
9秒前
ccalvintan发布了新的文献求助10
9秒前
10秒前
10秒前
头发乱了发布了新的文献求助10
11秒前
天天快乐应助DrYang采纳,获得10
11秒前
含糊发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
完美世界应助幸福胡萝卜采纳,获得10
13秒前
通~发布了新的文献求助10
13秒前
14秒前
科目三应助Arnold采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762