The role of shear viscosity as a biomarker for improving chronic kidney disease detection using shear wave elastography: A computational study using a validated finite element model

弹性成像 肾脏疾病 医学 剪切模量 生物标志物 剪切(地质) 生物医学工程 超声波 病理 材料科学 放射科 内科学 化学 复合材料 生物化学
作者
William T. H. Lim,Ean Hin Ooi,Ji Jinn Foo,Kwan Hoong Ng,Jeannie Hsiu Ding Wong,Sook Sam Leong
出处
期刊:Ultrasonics [Elsevier BV]
卷期号:133: 107046-107046 被引量:10
标识
DOI:10.1016/j.ultras.2023.107046
摘要

The application of ultrasound shear wave elastography for detecting chronic kidney disease, namely renal fibrosis, has been widely studied. A good correlation between tissue Young's modulus and the degree of renal impairment has been established. However, the current limitation of this imaging modality pertains to the linear elastic assumption used in quantifying the stiffness of renal tissue in commercial shear wave elastography systems. As such, when underlying medical conditions such as acquired cystic kidney disease, which may potentially influence the viscous component of renal tissue, is present concurrently with renal fibrosis, the accuracy of the imaging modality in detecting chronic kidney disease may be affected. The findings in this study demonstrate that quantifying the stiffness of linear viscoelastic tissue using an approach similar to those implemented in commercial shear wave elastography systems led to percentage errors as high as 87%. The findings presented indicate that use of shear viscosity to detect changes in renal impairment led to a reduction in percentage error to values as low as 0.3%. For cases in which renal tissue was affected by multiple medical conditions, shear viscosity was found to be a good indicator in gauging the reliability of the Young's modulus (quantified through a shear wave dispersion analysis) in detecting chronic kidney disease. The findings show that percentage error in stiffness quantification can be reduced to as low as 0.6%. The present study demonstrates the potential use of renal shear viscosity as a biomarker to improve the detection of chronic kidney disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
了又柳完成签到 ,获得积分10
2秒前
BENpao123发布了新的文献求助10
4秒前
NexusExplorer应助ruoyu111采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
Owen应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
周周发布了新的文献求助10
7秒前
8秒前
酷波er应助零蝉采纳,获得10
11秒前
舒心靖琪完成签到 ,获得积分10
12秒前
239287完成签到,获得积分10
14秒前
Owen应助macxinn采纳,获得10
16秒前
17秒前
19秒前
时尚丹寒完成签到 ,获得积分10
19秒前
知胜zjl完成签到 ,获得积分10
21秒前
零蝉发布了新的文献求助10
25秒前
老黑完成签到,获得积分10
26秒前
Jinyang完成签到 ,获得积分10
26秒前
xh完成签到,获得积分10
28秒前
不想做实验完成签到,获得积分10
29秒前
yanyimeng完成签到,获得积分10
30秒前
31秒前
sera发布了新的文献求助10
38秒前
agent完成签到 ,获得积分10
42秒前
卡卡完成签到,获得积分10
44秒前
米妮完成签到,获得积分10
47秒前
灰色与青完成签到,获得积分10
47秒前
49秒前
婷婷完成签到,获得积分20
50秒前
过于喧嚣的孤独完成签到,获得积分10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761818
求助须知:如何正确求助?哪些是违规求助? 3305596
关于积分的说明 10134822
捐赠科研通 3019634
什么是DOI,文献DOI怎么找? 1658239
邀请新用户注册赠送积分活动 792029
科研通“疑难数据库(出版商)”最低求助积分说明 754751