The role of shear viscosity as a biomarker for improving chronic kidney disease detection using shear wave elastography: A computational study using a validated finite element model

弹性成像 肾脏疾病 医学 剪切模量 生物标志物 剪切(地质) 生物医学工程 超声波 病理 材料科学 放射科 内科学 化学 复合材料 生物化学
作者
William T. H. Lim,Ean Hin Ooi,Ji Jinn Foo,Kwan Hoong Ng,Jeannie Hsiu Ding Wong,Sook Sam Leong
出处
期刊:Ultrasonics [Elsevier BV]
卷期号:133: 107046-107046 被引量:10
标识
DOI:10.1016/j.ultras.2023.107046
摘要

The application of ultrasound shear wave elastography for detecting chronic kidney disease, namely renal fibrosis, has been widely studied. A good correlation between tissue Young's modulus and the degree of renal impairment has been established. However, the current limitation of this imaging modality pertains to the linear elastic assumption used in quantifying the stiffness of renal tissue in commercial shear wave elastography systems. As such, when underlying medical conditions such as acquired cystic kidney disease, which may potentially influence the viscous component of renal tissue, is present concurrently with renal fibrosis, the accuracy of the imaging modality in detecting chronic kidney disease may be affected. The findings in this study demonstrate that quantifying the stiffness of linear viscoelastic tissue using an approach similar to those implemented in commercial shear wave elastography systems led to percentage errors as high as 87%. The findings presented indicate that use of shear viscosity to detect changes in renal impairment led to a reduction in percentage error to values as low as 0.3%. For cases in which renal tissue was affected by multiple medical conditions, shear viscosity was found to be a good indicator in gauging the reliability of the Young's modulus (quantified through a shear wave dispersion analysis) in detecting chronic kidney disease. The findings show that percentage error in stiffness quantification can be reduced to as low as 0.6%. The present study demonstrates the potential use of renal shear viscosity as a biomarker to improve the detection of chronic kidney disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
852应助JIAca采纳,获得10
1秒前
虚心岂愈发布了新的文献求助10
2秒前
zhuzhu发布了新的文献求助30
3秒前
爆米花应助笑笑采纳,获得10
4秒前
aqiuyuehe发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
wjx发布了新的文献求助10
4秒前
十一发布了新的文献求助10
4秒前
ynlqjqx发布了新的文献求助10
5秒前
小鲨鱼发布了新的文献求助10
5秒前
tianyue发布了新的文献求助10
5秒前
77发布了新的文献求助30
6秒前
柚子蟹完成签到,获得积分10
7秒前
Mike14完成签到,获得积分10
7秒前
七友完成签到,获得积分10
8秒前
lancetwu完成签到,获得积分10
10秒前
万能图书馆应助hhh采纳,获得10
10秒前
彭于晏应助qi采纳,获得10
11秒前
12秒前
zinan完成签到,获得积分20
13秒前
搜集达人应助tianyue采纳,获得10
14秒前
Wow发布了新的文献求助10
15秒前
15秒前
大模型应助lyric采纳,获得10
17秒前
17秒前
Dexter完成签到 ,获得积分10
18秒前
18秒前
liyu完成签到 ,获得积分10
18秒前
18秒前
19秒前
晓豪完成签到,获得积分20
19秒前
aqiuyuehe发布了新的文献求助10
19秒前
1轻微完成签到,获得积分10
19秒前
吴学仕完成签到,获得积分10
21秒前
21秒前
Cinderella发布了新的文献求助10
21秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4605700
求助须知:如何正确求助?哪些是违规求助? 4013370
关于积分的说明 12427232
捐赠科研通 3694209
什么是DOI,文献DOI怎么找? 2036815
邀请新用户注册赠送积分活动 1069756
科研通“疑难数据库(出版商)”最低求助积分说明 953990