The role of shear viscosity as a biomarker for improving chronic kidney disease detection using shear wave elastography: A computational study using a validated finite element model

弹性成像 肾脏疾病 医学 剪切模量 生物标志物 剪切(地质) 生物医学工程 超声波 病理 材料科学 放射科 内科学 化学 复合材料 生物化学
作者
William T. H. Lim,Ean Hin Ooi,Ji Jinn Foo,Kwan Hoong Ng,Jeannie Hsiu Ding Wong,Sook Sam Leong
出处
期刊:Ultrasonics [Elsevier]
卷期号:133: 107046-107046 被引量:10
标识
DOI:10.1016/j.ultras.2023.107046
摘要

The application of ultrasound shear wave elastography for detecting chronic kidney disease, namely renal fibrosis, has been widely studied. A good correlation between tissue Young's modulus and the degree of renal impairment has been established. However, the current limitation of this imaging modality pertains to the linear elastic assumption used in quantifying the stiffness of renal tissue in commercial shear wave elastography systems. As such, when underlying medical conditions such as acquired cystic kidney disease, which may potentially influence the viscous component of renal tissue, is present concurrently with renal fibrosis, the accuracy of the imaging modality in detecting chronic kidney disease may be affected. The findings in this study demonstrate that quantifying the stiffness of linear viscoelastic tissue using an approach similar to those implemented in commercial shear wave elastography systems led to percentage errors as high as 87%. The findings presented indicate that use of shear viscosity to detect changes in renal impairment led to a reduction in percentage error to values as low as 0.3%. For cases in which renal tissue was affected by multiple medical conditions, shear viscosity was found to be a good indicator in gauging the reliability of the Young's modulus (quantified through a shear wave dispersion analysis) in detecting chronic kidney disease. The findings show that percentage error in stiffness quantification can be reduced to as low as 0.6%. The present study demonstrates the potential use of renal shear viscosity as a biomarker to improve the detection of chronic kidney disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Raymond完成签到,获得积分10
刚刚
拙青完成签到,获得积分10
4秒前
小高同学完成签到,获得积分10
5秒前
6秒前
李123完成签到,获得积分10
8秒前
feiyang完成签到 ,获得积分10
9秒前
9秒前
001完成签到,获得积分10
11秒前
12秒前
枫糖叶落完成签到,获得积分10
17秒前
weijie完成签到,获得积分10
21秒前
yyy完成签到,获得积分20
25秒前
chiazy完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
28秒前
甜乎贝贝完成签到 ,获得积分10
29秒前
梯度完成签到,获得积分10
30秒前
现代的凝莲完成签到,获得积分10
31秒前
loga80完成签到,获得积分0
32秒前
早安完成签到 ,获得积分10
32秒前
薄荷味的猫完成签到 ,获得积分10
33秒前
美人鱼听不了超声波完成签到 ,获得积分10
33秒前
溪泉完成签到,获得积分10
38秒前
早睡早起身体好Q完成签到 ,获得积分10
38秒前
40秒前
40秒前
田様应助科研通管家采纳,获得10
40秒前
路灯下的小伙完成签到 ,获得积分10
40秒前
bener完成签到,获得积分10
44秒前
活力的妙之完成签到 ,获得积分10
45秒前
liu完成签到 ,获得积分10
46秒前
狂野凝竹完成签到,获得积分10
50秒前
鹿璟璟完成签到 ,获得积分10
50秒前
小葡萄完成签到 ,获得积分10
51秒前
火顺丁完成签到,获得积分10
51秒前
刘亮亮完成签到,获得积分10
52秒前
跳跃的语柔完成签到 ,获得积分10
55秒前
陈M雯完成签到 ,获得积分10
56秒前
闲人颦儿完成签到,获得积分0
57秒前
沫柠完成签到 ,获得积分10
58秒前
心系天下完成签到 ,获得积分10
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599922
求助须知:如何正确求助?哪些是违规求助? 4685721
关于积分的说明 14838888
捐赠科研通 4673965
什么是DOI,文献DOI怎么找? 2538431
邀请新用户注册赠送积分活动 1505597
关于科研通互助平台的介绍 1471067