The role of shear viscosity as a biomarker for improving chronic kidney disease detection using shear wave elastography: A computational study using a validated finite element model

弹性成像 肾脏疾病 医学 剪切模量 生物标志物 剪切(地质) 生物医学工程 超声波 病理 材料科学 放射科 内科学 化学 复合材料 生物化学
作者
William T. H. Lim,Ean Hin Ooi,Ji Jinn Foo,Kwan Hoong Ng,Jeannie Hsiu Ding Wong,Sook Sam Leong
出处
期刊:Ultrasonics [Elsevier]
卷期号:133: 107046-107046 被引量:9
标识
DOI:10.1016/j.ultras.2023.107046
摘要

The application of ultrasound shear wave elastography for detecting chronic kidney disease, namely renal fibrosis, has been widely studied. A good correlation between tissue Young's modulus and the degree of renal impairment has been established. However, the current limitation of this imaging modality pertains to the linear elastic assumption used in quantifying the stiffness of renal tissue in commercial shear wave elastography systems. As such, when underlying medical conditions such as acquired cystic kidney disease, which may potentially influence the viscous component of renal tissue, is present concurrently with renal fibrosis, the accuracy of the imaging modality in detecting chronic kidney disease may be affected. The findings in this study demonstrate that quantifying the stiffness of linear viscoelastic tissue using an approach similar to those implemented in commercial shear wave elastography systems led to percentage errors as high as 87%. The findings presented indicate that use of shear viscosity to detect changes in renal impairment led to a reduction in percentage error to values as low as 0.3%. For cases in which renal tissue was affected by multiple medical conditions, shear viscosity was found to be a good indicator in gauging the reliability of the Young's modulus (quantified through a shear wave dispersion analysis) in detecting chronic kidney disease. The findings show that percentage error in stiffness quantification can be reduced to as low as 0.6%. The present study demonstrates the potential use of renal shear viscosity as a biomarker to improve the detection of chronic kidney disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孟陬十一完成签到,获得积分10
刚刚
刚刚
搞怪的凡蕾完成签到,获得积分10
1秒前
2秒前
2秒前
万能图书馆应助刘星星采纳,获得10
3秒前
Ting完成签到 ,获得积分10
3秒前
3秒前
SciGPT应助希夷采纳,获得10
3秒前
3秒前
调皮黑猫完成签到,获得积分10
3秒前
3秒前
Sunny完成签到,获得积分10
3秒前
4秒前
应作如是观完成签到,获得积分10
4秒前
聪聪great完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
晓军驳回了1ssd应助
4秒前
4秒前
啊哈哈哈完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
jxcandice发布了新的文献求助10
6秒前
旺德福完成签到 ,获得积分10
6秒前
kevin完成签到,获得积分10
6秒前
naomi完成签到 ,获得积分10
6秒前
桐桐应助玉崟采纳,获得10
7秒前
慕青应助地狱跳跳虎采纳,获得10
7秒前
7秒前
英姑应助Autoimmune采纳,获得10
8秒前
Godspeed完成签到,获得积分10
8秒前
静时完成签到,获得积分10
8秒前
gg发布了新的文献求助10
8秒前
8秒前
醒不来的猫完成签到,获得积分10
8秒前
请叫我风吹麦浪应助新一采纳,获得30
8秒前
不对也没错给不对也没错的求助进行了留言
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762