已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Clustering-Based Computational Model to Group Students With Similar Programming Skills From Automatic Source Code Analysis Using Novel Features

计算机科学 聚类分析 背景(考古学) 源代码 班级(哲学) 集合(抽象数据类型) 优势和劣势 人工智能 数学教育 自然语言处理 程序设计语言 古生物学 哲学 数学 认识论 生物
作者
Davi Bernardo Silva,Déborah Ribeiro Carvalho,Carlos N. Silla
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:17: 428-444 被引量:2
标识
DOI:10.1109/tlt.2023.3273926
摘要

Throughout a programming course, students develop various source code tasks. Using these tasks to track students' progress can provide clues to the strengths and weaknesses found in each learning topic. This practice allows the teacher to intervene in learning in the first few weeks of class and maximize student gains. However, the biggest challenge is to overcome the amount of work required of the teacher in the manual analysis of all tasks. In this context, our main research objective is to automatically group students with similar programming skills based on the analysis of their submitted source codes. Our research is applied and uses an experimental procedure. First, we prepared the database, with more than 700 real-world source code tasks written in C Language, and distributed it in five different learning topics. Afterward, we define a set of features to be extracted from each learning topic. We defined and extracted 23 features from the source code for five learning topics. Then, we preprocess our database and extract the proposed features. Finally, we grouped the students. After performing the grouping, we obtained four groups of students, which were analyzed using a cluster midpoint calculation. Our results support the monitoring of students throughout the term, offering the teacher the freedom to create new exercises and waiving the obligation of any specific programming environment. We believe that these results can support the teacher in pedagogical decisions closer to the needs of each group of students.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YYY完成签到,获得积分10
4秒前
wssamuel完成签到,获得积分10
9秒前
林狗发布了新的文献求助50
9秒前
10秒前
哈哈完成签到,获得积分10
10秒前
吾皇完成签到 ,获得积分10
10秒前
小马甲应助tiantian8715采纳,获得10
10秒前
夏紊完成签到 ,获得积分10
11秒前
脑洞疼应助hyx采纳,获得30
14秒前
科研通AI2S应助王九八采纳,获得10
16秒前
Owen应助王小虾采纳,获得30
17秒前
18秒前
西里应助完美的海秋采纳,获得30
18秒前
刘晋完成签到,获得积分10
18秒前
21秒前
桃小y发布了新的文献求助20
22秒前
丘比特应助sci来采纳,获得30
22秒前
22秒前
刘晋发布了新的文献求助10
24秒前
hyx发布了新的文献求助30
25秒前
27秒前
28秒前
小二郎应助科研通管家采纳,获得10
29秒前
模糊中正应助科研通管家采纳,获得30
29秒前
星辰大海应助科研通管家采纳,获得10
29秒前
29秒前
maox1aoxin应助科研通管家采纳,获得30
29秒前
传奇3应助科研通管家采纳,获得10
29秒前
所所应助科研通管家采纳,获得10
30秒前
cocolu应助科研通管家采纳,获得10
30秒前
maox1aoxin应助科研通管家采纳,获得30
30秒前
星辰大海应助科研通管家采纳,获得10
30秒前
30秒前
maox1aoxin应助科研通管家采纳,获得30
30秒前
烟花应助科研通管家采纳,获得10
30秒前
Owen应助科研通管家采纳,获得10
30秒前
科研通AI2S应助王九八采纳,获得10
30秒前
大模型应助科研通管家采纳,获得10
30秒前
MYM应助科研通管家采纳,获得10
30秒前
31秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268425
求助须知:如何正确求助?哪些是违规求助? 2907963
关于积分的说明 8343966
捐赠科研通 2578251
什么是DOI,文献DOI怎么找? 1401868
科研通“疑难数据库(出版商)”最低求助积分说明 655215
邀请新用户注册赠送积分活动 634350