A Clustering-Based Computational Model to Group Students With Similar Programming Skills From Automatic Source Code Analysis Using Novel Features

计算机科学 聚类分析 背景(考古学) 源代码 班级(哲学) 集合(抽象数据类型) 优势和劣势 人工智能 数学教育 自然语言处理 程序设计语言 数学 生物 认识论 哲学 古生物学
作者
Davi Bernardo Silva,Déborah Ribeiro Carvalho,Carlos N. Silla
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:17: 428-444 被引量:2
标识
DOI:10.1109/tlt.2023.3273926
摘要

Throughout a programming course, students develop various source code tasks. Using these tasks to track students' progress can provide clues to the strengths and weaknesses found in each learning topic. This practice allows the teacher to intervene in learning in the first few weeks of class and maximize student gains. However, the biggest challenge is to overcome the amount of work required of the teacher in the manual analysis of all tasks. In this context, our main research objective is to automatically group students with similar programming skills based on the analysis of their submitted source codes. Our research is applied and uses an experimental procedure. First, we prepared the database, with more than 700 real-world source code tasks written in C Language, and distributed it in five different learning topics. Afterward, we define a set of features to be extracted from each learning topic. We defined and extracted 23 features from the source code for five learning topics. Then, we preprocess our database and extract the proposed features. Finally, we grouped the students. After performing the grouping, we obtained four groups of students, which were analyzed using a cluster midpoint calculation. Our results support the monitoring of students throughout the term, offering the teacher the freedom to create new exercises and waiving the obligation of any specific programming environment. We believe that these results can support the teacher in pedagogical decisions closer to the needs of each group of students.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿宇发布了新的文献求助10
1秒前
wzz完成签到,获得积分10
3秒前
一只鲨呱完成签到 ,获得积分10
4秒前
lxj发布了新的文献求助10
4秒前
香蕉觅云应助yushiolo采纳,获得10
6秒前
zxe111发布了新的文献求助10
7秒前
完美世界应助lalala采纳,获得10
7秒前
田様应助66666采纳,获得10
7秒前
8秒前
Jojo完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
蓝天应助元谷雪采纳,获得10
10秒前
CipherSage应助积极的咖啡采纳,获得10
10秒前
10秒前
俏皮含双完成签到,获得积分10
11秒前
小小马完成签到 ,获得积分10
12秒前
al完成签到 ,获得积分0
12秒前
自然完成签到,获得积分10
13秒前
李健的小迷弟应助日光下采纳,获得30
14秒前
15秒前
15秒前
公瑾完成签到 ,获得积分10
16秒前
天天发布了新的文献求助10
16秒前
ss发布了新的文献求助10
16秒前
17秒前
沙耶酱完成签到,获得积分10
20秒前
zzznznnn发布了新的文献求助10
21秒前
FPPL发布了新的文献求助20
21秒前
dyhhh完成签到 ,获得积分10
22秒前
小妹完成签到,获得积分10
24秒前
susan完成签到,获得积分10
24秒前
25秒前
汉堡包应助一禅采纳,获得10
26秒前
LIKUN完成签到,获得积分10
26秒前
26秒前
26秒前
26秒前
十七完成签到,获得积分10
27秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604083
求助须知:如何正确求助?哪些是违规求助? 4688908
关于积分的说明 14856973
捐赠科研通 4696430
什么是DOI,文献DOI怎么找? 2541128
邀请新用户注册赠送积分活动 1507314
关于科研通互助平台的介绍 1471851