A Clustering-Based Computational Model to Group Students With Similar Programming Skills From Automatic Source Code Analysis Using Novel Features

计算机科学 聚类分析 背景(考古学) 源代码 班级(哲学) 集合(抽象数据类型) 优势和劣势 人工智能 数学教育 自然语言处理 程序设计语言 数学 生物 认识论 哲学 古生物学
作者
Davi Bernardo Silva,Déborah Ribeiro Carvalho,Carlos N. Silla
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:17: 428-444 被引量:2
标识
DOI:10.1109/tlt.2023.3273926
摘要

Throughout a programming course, students develop various source code tasks. Using these tasks to track students' progress can provide clues to the strengths and weaknesses found in each learning topic. This practice allows the teacher to intervene in learning in the first few weeks of class and maximize student gains. However, the biggest challenge is to overcome the amount of work required of the teacher in the manual analysis of all tasks. In this context, our main research objective is to automatically group students with similar programming skills based on the analysis of their submitted source codes. Our research is applied and uses an experimental procedure. First, we prepared the database, with more than 700 real-world source code tasks written in C Language, and distributed it in five different learning topics. Afterward, we define a set of features to be extracted from each learning topic. We defined and extracted 23 features from the source code for five learning topics. Then, we preprocess our database and extract the proposed features. Finally, we grouped the students. After performing the grouping, we obtained four groups of students, which were analyzed using a cluster midpoint calculation. Our results support the monitoring of students throughout the term, offering the teacher the freedom to create new exercises and waiving the obligation of any specific programming environment. We believe that these results can support the teacher in pedagogical decisions closer to the needs of each group of students.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吕小布发布了新的文献求助10
刚刚
1秒前
1秒前
娃娃菜妮完成签到,获得积分10
1秒前
万万没想到完成签到,获得积分10
2秒前
2秒前
搜集达人应助hd采纳,获得10
3秒前
赘婿应助丢丢银采纳,获得10
3秒前
3秒前
科研人才完成签到 ,获得积分10
5秒前
风清扬应助可爱的老司机采纳,获得30
6秒前
清新的苑博完成签到,获得积分10
6秒前
CYQ发布了新的文献求助10
6秒前
慕青应助嘻嘻采纳,获得10
7秒前
复杂的薯片完成签到,获得积分10
8秒前
CipherSage应助曹小妍采纳,获得10
8秒前
10秒前
Cisplatin发布了新的文献求助10
11秒前
Yin完成签到,获得积分10
12秒前
14秒前
充电宝应助belly采纳,获得10
14秒前
14秒前
14秒前
朱颜发布了新的文献求助10
15秒前
狗子哥完成签到,获得积分10
15秒前
Hello应助kenna123采纳,获得10
15秒前
16秒前
lll完成签到 ,获得积分10
16秒前
彭于晏应助王涛采纳,获得10
16秒前
18秒前
18秒前
18秒前
li完成签到 ,获得积分10
19秒前
19秒前
优美从菡发布了新的文献求助10
20秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
睿O宝宝O完成签到 ,获得积分10
22秒前
耳喃完成签到,获得积分10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474