Testing Operating Procedures for Large UAS with Detect and Avoid Capabilities in Civil Air Traffic Management Environments

驾驶舱 空中交通管制 航空学 空中交通管理 工程类 忠诚 民用航空 无人机 航空电子设备 计算机科学 航空航天 系统工程 模拟 航空 航空航天工程 电信 遗传学 生物
作者
Timothy Bleakley,Emmanuel Sunil
标识
DOI:10.1109/icns58246.2023.10124301
摘要

The Royal Netherlands Aerospace Center (NLR), in partnership with General Atomics Aeronautical Systems, Inc. (GA-ASI) and Information Systems Delft (ISD), has conducted several series of human-in-the-loop simulation experiments to assess and refine the safety and efficiency of fully integrating operations of large uncrewed aircraft systems (UAS) into typical civil air traffic scenarios. These experiments used a high-fidelity Air Traffic Control (ATC) simulation facility to provide professional controllers and pilots with the experience of introducing large UAS operations into otherwise familiar air traffic situations. Currently, there are no UAS operating approvals that would allow such tests to be conducted in the real world, so the experience gained and lessons learned are invaluable in preparing for safe and smooth introduction of large UAS into civil airspace operations in the near future.Detect and Avoid (DAA) technologies are key to allowing nonsegregated, beyond visual line-of-sight (BVLOS) operation of large UAS, by enabling their remote pilots to keep the universal right of way rules of the air, without the conventional ability to see out of the aircraft's cockpit. The focus of these experiments, therefore, has been to test DAA capabilities and operating procedures needed for remote pilots and air traffic controllers to maintain separation of the uncrewed aircraft (UA) from other aircraft and to avoid collisions. Scenarios were carefully designed to trigger DAA alerting and guidance to the remote pilot, requiring a response with appropriate procedures, including coordination with ATC, to assess the safety and operational efficiency of those procedures. Many of the scenarios required traffic to make procedural mistakes in order to create conflict geometries that would trigger DAA alerts. UAS contingencies were also incorporated, such as loss of C2 link, to evaluate remote pilot and controller response procedures.GA-ASI's SkyGuardian, a turboprop-powered, large fixed-wing UAS, was used as the performance model for a UAS operating from conventional runways that could perform flights as diverse as infrastructure surveying to cargo transport. Rotterdam airport and its surrounding airspace was selected as the operating context, to typify moderately busy and complex European airspace. The UAS flight scenarios spanned all the typical domestic airspace ATC roles, involving Tower, Approach and Route controllers, and included typical background commercial and general aviation traffic patterns and densities.The DAA capabilities tested are based on RTCA DO-365B Minimum Operational Performance Standards (MOPS). Earlier series of experiments tested the capabilities of a Class 1 system with air-to-air radar, active surveillance, ADS-B In and DAA alerting and guidance for en-route self-separation, plus Class 5 for DAA alerting and guidance in the terminal area. The latest series of experiments upgraded the DAA system to Class 2 capabilities with the addition of TCAS II collision avoidance logic, also with automatic execution of TCAS Resolution Advisories by the UA. A new operating mode was also added for Cockpit Display of Traffic Information (CDTI)-assisted visual separation (CAVS), to test the efficiency and effectiveness of procedures for controllers to delegate separation responsibility to the remote pilot during the landing approach. Operating procedures were initially based on those described in the Operational Services Environment Description appendix of RTCA DO-365B.The professional participants provided qualitative assessment of several human factors aspects for each scenario and the procedures employed, including their perceptions of safety, operational acceptability, situational awareness and workload. The experiments proved that appropriately-equipped UAS can be introduced safely into the existing airspace system, and that controllers adapt quickly to the few unique considerations needed when managing UAS traffic. The DAA system gave remote pilots unprecedented traffic awareness compared to conventional incockpit situations, enabling them to identify potential conflicts at a similar time to ATC, or even before. This situation emphasized the need for procedures that support efficient coordination between remote pilots and ATC, to avoid contrary resolutions to the same identified conflict. Beneficial changes to DAA procedures were also identified that would improve overall safety and operational efficiency. For example, by providing more options when responding to traffic alerts in the terminal area, and to ensure that remote pilots follow all right of way rules, for predictability when responding to DAA alerting and guidance. Furthermore, when the UA executes an automatic Resolution Advisory while in the Lost C2 Link state, controllers expressed a preference for the UA to return automatically to its approved lost link altitude, after becoming clear of the conflict, to minimize the incidence of secondary conflicts and to reduce controller workload. These findings and others will be fed back to RTCA committees to further improve DAA MOPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丁鹏笑完成签到 ,获得积分0
刚刚
刚刚
平平无奇小张完成签到 ,获得积分10
1秒前
默默的立辉完成签到,获得积分10
2秒前
Lll发布了新的文献求助10
3秒前
6秒前
天天完成签到 ,获得积分10
6秒前
山止川行完成签到,获得积分10
6秒前
芳凤凤凤iona完成签到,获得积分20
8秒前
五五完成签到,获得积分10
10秒前
marongzhi完成签到 ,获得积分10
11秒前
11秒前
11秒前
12秒前
慕青应助Lll采纳,获得10
12秒前
寒冷乐驹完成签到,获得积分10
16秒前
16秒前
gliterr发布了新的文献求助10
18秒前
pb完成签到 ,获得积分10
19秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
bkagyin应助科研通管家采纳,获得10
20秒前
zhikaiyici应助科研通管家采纳,获得10
20秒前
所所应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
小马甲应助科研通管家采纳,获得10
20秒前
打打应助科研通管家采纳,获得10
20秒前
小蘑菇应助科研通管家采纳,获得10
21秒前
Hello应助科研通管家采纳,获得10
21秒前
bkagyin应助科研通管家采纳,获得10
21秒前
小二郎应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
别抢我的虾滑完成签到,获得积分10
24秒前
Owen应助BK1BK22采纳,获得10
24秒前
Summer完成签到 ,获得积分10
25秒前
英俊的铭应助皮老师采纳,获得10
31秒前
33秒前
风中的青完成签到,获得积分10
34秒前
BK1BK22发布了新的文献求助10
36秒前
LIU完成签到 ,获得积分10
36秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163007
求助须知:如何正确求助?哪些是违规求助? 2813990
关于积分的说明 7902812
捐赠科研通 2473633
什么是DOI,文献DOI怎么找? 1316952
科研通“疑难数据库(出版商)”最低求助积分说明 631560
版权声明 602187