计算机科学
可穿戴计算机
人工智能
活动识别
图形
特征提取
无线传感器网络
人工神经网络
模式识别(心理学)
机器学习
基本事实
数据挖掘
理论计算机科学
计算机网络
嵌入式系统
作者
Yan Wang,Xin Wang,Yang Hong-mei,Yingrui Geng,Hongnian Yu,Zheng Ge,Liang Liao
出处
期刊:IEEE Transactions on Instrumentation and Measurement
[Institute of Electrical and Electronics Engineers]
日期:2023-01-01
卷期号:72: 1-14
被引量:4
标识
DOI:10.1109/tim.2023.3276004
摘要
Obtaining robust feature representations from multi-position wearable sensory data is challenging in human activity recognition (HAR) since data from different positions can have unordered implicit correlations. Graph neural networks (GNNs) represent data as structured graphs by mining complex relationships and interdependency via message passing between the nodes of graphs. This paper proposes a novel framework (MhaGNN) that combines GNNs and the multi-head attention mechanism, aiming to learn more informative representations for multi-position HAR tasks. The MhaGNN framework takes the sensor channels from multiple wearing positions as nodes to construct graph-structured data from the spatial dimension. Besides, the multi-head attention mechanism is introduced to complete the message passing and aggregation of the graphs for spatial-temporal feature extraction. The MhaGNN learns correlations among sensor channels that can be used as compensatory features together with the captured features from each single sensor channel to enhance HAR. Experimental evaluations on three publicly available HAR datasets and a ground-truth dataset demonstrate that our proposed MhaGNN achieves state-of-the-art recognition performance with the captured rich features, including PAMAP2, OPPORTUNITY, MHAEATH and MPWHAR.
科研通智能强力驱动
Strongly Powered by AbleSci AI