MhaGNN: A Novel Framework for Wearable Sensor-Based Human Activity Recognition Combining Multi-Head Attention and Graph Neural Networks

计算机科学 可穿戴计算机 人工智能 活动识别 图形 特征提取 无线传感器网络 人工神经网络 模式识别(心理学) 机器学习 基本事实 数据挖掘 理论计算机科学 计算机网络 嵌入式系统
作者
Yan Wang,Xin Wang,Yang Hong-mei,Yingrui Geng,Hongnian Yu,Zheng Ge,Liang Liao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-14 被引量:4
标识
DOI:10.1109/tim.2023.3276004
摘要

Obtaining robust feature representations from multi-position wearable sensory data is challenging in human activity recognition (HAR) since data from different positions can have unordered implicit correlations. Graph neural networks (GNNs) represent data as structured graphs by mining complex relationships and interdependency via message passing between the nodes of graphs. This paper proposes a novel framework (MhaGNN) that combines GNNs and the multi-head attention mechanism, aiming to learn more informative representations for multi-position HAR tasks. The MhaGNN framework takes the sensor channels from multiple wearing positions as nodes to construct graph-structured data from the spatial dimension. Besides, the multi-head attention mechanism is introduced to complete the message passing and aggregation of the graphs for spatial-temporal feature extraction. The MhaGNN learns correlations among sensor channels that can be used as compensatory features together with the captured features from each single sensor channel to enhance HAR. Experimental evaluations on three publicly available HAR datasets and a ground-truth dataset demonstrate that our proposed MhaGNN achieves state-of-the-art recognition performance with the captured rich features, including PAMAP2, OPPORTUNITY, MHAEATH and MPWHAR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
剪羊毛发布了新的文献求助10
1秒前
迹K完成签到,获得积分10
4秒前
白樱恋曲发布了新的文献求助10
5秒前
张龙雨发布了新的文献求助10
8秒前
9秒前
12秒前
13秒前
15秒前
15秒前
研友_VZG7GZ应助嘉嘉子采纳,获得10
16秒前
16秒前
xiaose完成签到,获得积分20
16秒前
满姣发布了新的文献求助10
17秒前
18秒前
星辰大海应助虚拟的凝海采纳,获得10
20秒前
超级冰露发布了新的文献求助80
21秒前
852应助一块小白糖采纳,获得10
22秒前
FashionBoy应助tkdzjr12345采纳,获得10
22秒前
张梦涵关注了科研通微信公众号
22秒前
会放屁的巴哥完成签到 ,获得积分10
23秒前
甜甜的悲发布了新的文献求助10
24秒前
26秒前
26秒前
27秒前
哈哈完成签到,获得积分20
29秒前
所所应助fengzi采纳,获得10
30秒前
Orange应助壮观的猎豹采纳,获得30
31秒前
32秒前
tkdzjr12345发布了新的文献求助10
32秒前
哈哈发布了新的文献求助10
32秒前
ambition发布了新的文献求助10
38秒前
38秒前
38秒前
39秒前
41秒前
41秒前
卓zhuo完成签到 ,获得积分10
42秒前
fengzi发布了新的文献求助10
43秒前
张梦涵发布了新的文献求助10
44秒前
西贝发布了新的文献求助10
46秒前
高分求助中
Comprehensive natural products III : chemistry and biology 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346458
求助须知:如何正确求助?哪些是违规求助? 2973193
关于积分的说明 8658263
捐赠科研通 2653611
什么是DOI,文献DOI怎么找? 1453276
科研通“疑难数据库(出版商)”最低求助积分说明 672801
邀请新用户注册赠送积分活动 662691