MhaGNN: A Novel Framework for Wearable Sensor-Based Human Activity Recognition Combining Multi-Head Attention and Graph Neural Networks

计算机科学 可穿戴计算机 人工智能 活动识别 图形 特征提取 无线传感器网络 人工神经网络 模式识别(心理学) 机器学习 基本事实 数据挖掘 理论计算机科学 计算机网络 嵌入式系统
作者
Yan Wang,Xin Wang,Yang Hong-mei,Yingrui Geng,Hongnian Yu,Zheng Ge,Liang Liao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-14 被引量:4
标识
DOI:10.1109/tim.2023.3276004
摘要

Obtaining robust feature representations from multi-position wearable sensory data is challenging in human activity recognition (HAR) since data from different positions can have unordered implicit correlations. Graph neural networks (GNNs) represent data as structured graphs by mining complex relationships and interdependency via message passing between the nodes of graphs. This paper proposes a novel framework (MhaGNN) that combines GNNs and the multi-head attention mechanism, aiming to learn more informative representations for multi-position HAR tasks. The MhaGNN framework takes the sensor channels from multiple wearing positions as nodes to construct graph-structured data from the spatial dimension. Besides, the multi-head attention mechanism is introduced to complete the message passing and aggregation of the graphs for spatial-temporal feature extraction. The MhaGNN learns correlations among sensor channels that can be used as compensatory features together with the captured features from each single sensor channel to enhance HAR. Experimental evaluations on three publicly available HAR datasets and a ground-truth dataset demonstrate that our proposed MhaGNN achieves state-of-the-art recognition performance with the captured rich features, including PAMAP2, OPPORTUNITY, MHAEATH and MPWHAR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助顺顺过过采纳,获得10
刚刚
水牛完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
3秒前
柴胡发布了新的文献求助10
6秒前
久木发布了新的文献求助10
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
loong应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
lllll发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
yjy123应助科研通管家采纳,获得10
8秒前
8秒前
asdfzxcv应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
8秒前
迅速翠风应助科研通管家采纳,获得10
8秒前
loong应助科研通管家采纳,获得10
8秒前
asdfzxcv应助科研通管家采纳,获得10
8秒前
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
asdfzxcv应助科研通管家采纳,获得10
9秒前
asdfzxcv应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
木子杨发布了新的文献求助30
9秒前
9秒前
yjy123应助科研通管家采纳,获得10
9秒前
Twonej应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
asdfzxcv应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741989
求助须知:如何正确求助?哪些是违规求助? 5404909
关于积分的说明 15343645
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625021
邀请新用户注册赠送积分活动 1573893
关于科研通互助平台的介绍 1530838