清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

VerteFormer: A single‐staged Transformer network for vertebrae segmentation from CT images with arbitrary field of views

分割 计算机科学 人工智能 深度学习 模式识别(心理学) 计算机视觉
作者
Xin You,Yun Gu,Yingying Liu,Steve Lu,Xin Tang,Jie Yang
出处
期刊:Medical Physics [Wiley]
卷期号:50 (10): 6296-6318 被引量:3
标识
DOI:10.1002/mp.16467
摘要

Spinal diseases are burdening an increasing number of patients. And fully automatic vertebrae segmentation for CT images with arbitrary field of views (FOVs), has been a fundamental research for computer-assisted spinal disease diagnosis and surgical intervention. Therefore, researchers aim to solve this challenging task in the past years.This task suffers from challenges including the intra-vertebrae inconsistency of segmentation and the poor identification of biterminal vertebrae in CT scans. And there are some limitations in existing models, which might be difficult to be applied to spinal cases with arbitrary FOVs or employ multi-stage networks with too much computational cost. In this paper, we propose a single-staged model called VerteFormer which can effectively deal with the challenges and limitations mentioned above.The proposed VerteFormer utilizes the advantage of Vision Transformer (ViT), which does well in mining global relations for input data. The Transformer and UNet-based structure effectively fuse global and local features of vertebrae. Beisdes, we propose the Edge Detection (ED) block based on convolution and self-attention to divide neighboring vertebrae with clear boundary lines. And it simultaneously promotes the network to achieve more consistent segmentation masks of vertebrae. To better identify the labels of vertebrae in the spine, particularly biterminal vertebrae, we further introduce global information generated from the Global Information Extraction (GIE) block.We evaluate the proposed model on two public datasets: MICCAI Challenge VerSe 2019 and 2020. And VerteFormer achieve 86.39% and 86.54% of dice scores on the public and hidden test datasets of VerSe 2019, 84.53% and 86.86% of dice scores on VerSe 2020, which outperforms other Transformer-based models and single-staged methods specifically designed for the VerSe Challenge. Additional ablation experiments validate the effectiveness of ViT block, ED block and GIE block.We propose a single-staged Transformer-based model for the task of fully automatic vertebrae segmentation from CT images with arbitrary FOVs. ViT demonstrates its effectiveness in modeling long-term relations. The ED block and GIE block has shown their improvements to the segmentation performance of vertebrae. The proposed model can assist physicians for spinal diseases' diagnosis and surgical intervention, and is also promising to be generalized and transferred to other applications of medical imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶醉的烤鸡应助HS采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
华仔应助jerry采纳,获得10
34秒前
HUI完成签到,获得积分10
51秒前
大熊完成签到 ,获得积分10
1分钟前
1分钟前
传奇3应助科研通管家采纳,获得10
2分钟前
TongKY完成签到 ,获得积分10
2分钟前
小白菜完成签到 ,获得积分10
3分钟前
5分钟前
5分钟前
曙光完成签到,获得积分10
6分钟前
iwsaml完成签到,获得积分10
6分钟前
6分钟前
Peppermint完成签到,获得积分10
6分钟前
7分钟前
jerry发布了新的文献求助10
7分钟前
jerry完成签到,获得积分10
8分钟前
8分钟前
顾矜应助正直涔雨采纳,获得10
8分钟前
迷茫的一代完成签到,获得积分10
8分钟前
8分钟前
9分钟前
2534165发布了新的文献求助30
9分钟前
正直涔雨发布了新的文献求助10
9分钟前
9分钟前
正直涔雨完成签到,获得积分20
9分钟前
爱心完成签到 ,获得积分0
9分钟前
souther完成签到,获得积分0
9分钟前
10分钟前
小透明应助科研通管家采纳,获得10
10分钟前
chen完成签到,获得积分10
10分钟前
前程似锦完成签到 ,获得积分10
11分钟前
ding应助hqc采纳,获得10
12分钟前
12分钟前
hqc发布了新的文献求助10
12分钟前
12分钟前
003完成签到,获得积分10
13分钟前
13分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
彭城银.延安时期中国共产党对外传播研究--以新华社为例[D].2024 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3655730
求助须知:如何正确求助?哪些是违规求助? 3218580
关于积分的说明 9724499
捐赠科研通 2927071
什么是DOI,文献DOI怎么找? 1603013
邀请新用户注册赠送积分活动 755904
科研通“疑难数据库(出版商)”最低求助积分说明 733617