Translating radiology reports into plain language using ChatGPT and GPT-4 with prompt learning: results, limitations, and potential

误传 医学物理学 医学 放射科 医疗保健 肺癌筛查 普通英语 计算机断层摄影术 点(几何) 磁共振成像 质量(理念) 计算机科学 语言学 计算机安全 经济增长 数学 认识论 几何学 哲学 经济
作者
Qing Lyu,Josh Tan,Michael E. Zapadka,Janardhana Ponnatapura,Chuang Niu,Kyle J. Myers,Ge Wang,Christopher T. Whitlow
出处
期刊:Visual Computing for Industry, Biomedicine, and Art [Springer Nature]
卷期号:6 (1) 被引量:174
标识
DOI:10.1186/s42492-023-00136-5
摘要

Abstract The large language model called ChatGPT has drawn extensively attention because of its human-like expression and reasoning abilities. In this study, we investigate the feasibility of using ChatGPT in experiments on translating radiology reports into plain language for patients and healthcare providers so that they are educated for improved healthcare. Radiology reports from 62 low-dose chest computed tomography lung cancer screening scans and 76 brain magnetic resonance imaging metastases screening scans were collected in the first half of February for this study. According to the evaluation by radiologists, ChatGPT can successfully translate radiology reports into plain language with an average score of 4.27 in the five-point system with 0.08 places of information missing and 0.07 places of misinformation. In terms of the suggestions provided by ChatGPT, they are generally relevant such as keeping following-up with doctors and closely monitoring any symptoms, and for about 37% of 138 cases in total ChatGPT offers specific suggestions based on findings in the report. ChatGPT also presents some randomness in its responses with occasionally over-simplified or neglected information, which can be mitigated using a more detailed prompt. Furthermore, ChatGPT results are compared with a newly released large model GPT-4, showing that GPT-4 can significantly improve the quality of translated reports. Our results show that it is feasible to utilize large language models in clinical education, and further efforts are needed to address limitations and maximize their potential.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小马甲应助MoXian采纳,获得10
刚刚
刚刚
刚刚
笑点低衬衫完成签到 ,获得积分10
1秒前
1秒前
1秒前
OPO完成签到,获得积分10
1秒前
2秒前
3秒前
酱酱君完成签到,获得积分10
4秒前
4秒前
琉璃苣完成签到,获得积分10
4秒前
沐阳d完成签到,获得积分10
5秒前
满天星完成签到,获得积分10
5秒前
Yeah_椰椰完成签到,获得积分10
6秒前
冷傲达发布了新的文献求助10
7秒前
沐阳d发布了新的文献求助10
7秒前
酱酱君发布了新的文献求助10
7秒前
8秒前
汉堡包应助坚果采纳,获得10
8秒前
8秒前
苹果香菱发布了新的文献求助30
9秒前
兴奋鼠标发布了新的文献求助20
10秒前
carol7298完成签到 ,获得积分10
10秒前
11秒前
斯文败类应助自信钧采纳,获得10
11秒前
MoXian发布了新的文献求助10
12秒前
jing完成签到,获得积分10
12秒前
可爱的函函应助黑钻采纳,获得10
12秒前
12秒前
xue发布了新的文献求助10
13秒前
13秒前
14秒前
赘婿应助吾猫采纳,获得10
15秒前
15秒前
科目三应助孤独的芒果采纳,获得10
16秒前
jimi完成签到 ,获得积分20
16秒前
16秒前
和谐绿竹发布了新的文献求助10
17秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3221700
求助须知:如何正确求助?哪些是违规求助? 2870410
关于积分的说明 8170405
捐赠科研通 2537357
什么是DOI,文献DOI怎么找? 1369382
科研通“疑难数据库(出版商)”最低求助积分说明 645496
邀请新用户注册赠送积分活动 619179