Symptom clusters change over time among patients with gynecological cancer receiving chemotherapy

医学 化疗 恶心 社会心理的 癌症 心理干预 内科学 物理疗法 肿瘤科 精神科
作者
Haryani Haryani,Yu‐Yun Hsu,Shan‐Tair Wang
出处
期刊:European Journal of Oncology Nursing [Elsevier]
卷期号:60: 102193-102193 被引量:8
标识
DOI:10.1016/j.ejon.2022.102193
摘要

This study aimed to explore symptom clusters at different time points among patients with gynecological cancer undergoing chemotherapy.A longitudinal design was used to explore the patterns of symptom clusters four times: during prechemotherapy (T0), first (T1), second (T2), and third (T3) cycles of chemotherapy. The Memorial Symptom Assessment Scale was used to assess the dimension of symptoms. The study was conducted in Indonesia. Exploratory factor analysis was used to analyze the structures of symptom clusters across time.A total of 120 subjects provided baseline data, and 82 were retained at T3. Before chemotherapy, the most prevalent symptoms were pain and difficulty in sleeping. However, after starting chemotherapy, the patients suffered from chemotherapy-related side effects, including nausea, change in taste, lack of appetite, hair loss, fatigue, and feeling of "I don't look like myself." Six symptom clusters were identified in patients with gynecological cancer across four time points during chemotherapy: pain-related, nutritional, emotional, hormonal-related, fatigue-related, and body-image symptom clusters. Nutrition and emotion symptom clusters occurred consistently from T0 to T3, fatigue-related clusters appeared after chemotherapy at T1 and T2, and body-image symptom clusters emerged at late T2 and T3.The structures of symptom clusters in this study were dynamic and various. The nutrition and emotional-related symptoms constituted a cluster during chemotherapy. Oncology nurses should provide physical and psychosocial interventions to relieve these symptoms in patients with gynecological cancer undergoing chemotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
ajiduo完成签到 ,获得积分10
6秒前
蓝莓酱蘸橘子完成签到 ,获得积分10
6秒前
Lenard Guma完成签到 ,获得积分10
6秒前
木又完成签到 ,获得积分10
8秒前
dldldl完成签到,获得积分10
9秒前
Wang发布了新的文献求助10
9秒前
天才小能喵完成签到 ,获得积分0
17秒前
Zhang完成签到,获得积分10
18秒前
21秒前
zjhzslq完成签到,获得积分10
21秒前
yufan发布了新的文献求助10
23秒前
锅包肉完成签到 ,获得积分10
28秒前
NorthWang完成签到,获得积分10
29秒前
33秒前
熊熊出击完成签到 ,获得积分10
33秒前
尤海露发布了新的文献求助10
36秒前
老实皮卡丘完成签到 ,获得积分10
38秒前
尤海露完成签到,获得积分10
42秒前
wwwteng呀完成签到,获得积分10
43秒前
烟火会翻滚完成签到,获得积分10
45秒前
zuhangzhao完成签到 ,获得积分10
53秒前
香蕉觅云应助苗条绝义采纳,获得10
53秒前
青黛完成签到 ,获得积分10
55秒前
55秒前
xelloss完成签到,获得积分10
1分钟前
从别后忆相逢完成签到 ,获得积分10
1分钟前
1分钟前
彩色的芷容完成签到 ,获得积分10
1分钟前
wang完成签到 ,获得积分10
1分钟前
godgyw完成签到 ,获得积分10
1分钟前
Wang发布了新的文献求助10
1分钟前
赘婿应助熊二采纳,获得10
1分钟前
小周完成签到 ,获得积分10
1分钟前
高高完成签到 ,获得积分10
1分钟前
吨吨完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI5应助科研通管家采纳,获得20
1分钟前
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555861
求助须知:如何正确求助?哪些是违规求助? 3131451
关于积分的说明 9391158
捐赠科研通 2831150
什么是DOI,文献DOI怎么找? 1556402
邀请新用户注册赠送积分活动 726516
科研通“疑难数据库(出版商)”最低求助积分说明 715890