无线电技术
浆液性液体
卵巢癌
医学
肿瘤科
浆液性卵巢癌
无进展生存期
内科学
总体生存率
癌症
放射科
作者
Xinghao Wang,Chen Xu,Marcin Grzegorzek,Hongzan Sun
标识
DOI:10.3389/fphys.2022.948767
摘要
Purpose: We aim to develop and validate PET/ CT image-based radiomics to determine the Ki-67 status of high-grade serous ovarian cancer (HGSOC), in which we use the metabolic subregion evolution to improve the prediction ability of the model. At the same time, the stratified effect of the radiomics model on the progression-free survival rate of ovarian cancer patients was illustrated. Materials and methods: We retrospectively reviewed 161 patients with HGSOC from April 2013 to January 2019. 18F-FDG PET/ CT images before treatment, pathological reports, and follow-up data were analyzed. A randomized grouping method was used to divide ovarian cancer patients into a training group and validation group. PET/ CT images were fused to extract radiomics features of the whole tumor region and radiomics features based on the Habitat method. The feature is dimensionality reduced, and meaningful features are screened to form a signature for predicting the Ki-67 status of ovarian cancer. Meanwhile, survival analysis was conducted to explore the hierarchical guidance significance of radiomics in the prognosis of patients with ovarian cancer. Results: Compared with texture features extracted from the whole tumor, the texture features generated by the Habitat method can better predict the Ki-67 state (p < 0.001). Radiomics based on Habitat can predict the Ki-67 expression accurately and has the potential to become a new marker instead of Ki-67. At the same time, the Habitat model can better stratify the prognosis (p < 0.05). Conclusion: We found a noninvasive imaging predictor that could guide the stratification of prognosis in ovarian cancer patients, which is related to the expression of Ki-67 in tumor tissues. This method is of great significance for the diagnosis and treatment of ovarian cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI