Centrifugal microfluidic platform with digital image analysis for parallel red cell antigen typing

微流控 化学 支持向量机 色谱法 红细胞 数码相机 血型(非人类) 计算机视觉 人工智能 生物医学工程 计算机科学 ABO血型系统 纳米技术 免疫学 医学 生物 生物化学 材料科学
作者
Shaohua Ding,Shengbao Duan,Yezhou Chen,Jinsong Xie,Jingjing Tian,Yong Li,Hongmei Wang
出处
期刊:Talanta [Elsevier]
卷期号:252: 123856-123856 被引量:8
标识
DOI:10.1016/j.talanta.2022.123856
摘要

This study presents a portable multichannel microfluidic device for parallel and digital analysis of red cell antigen typing. A zigzag-shaped precise metering channel was designed for the simultaneous aliquoting of samples, which is independent of the volume of the predeposited blood-typing reagents in the reaction chambers. The entire assay protocol can be conducted using a sequential-step spinning protocol, which resembles that of conventional tube tests for blood typing; however, the manual procedure is largely reduced compared to that of conventional systems. After loading the samples, the disc is centrifuged in a defined program with five sequential steps, each of which can be completed in a few seconds. Through step-wise centrifugation, predeposited antibodies react with red blood cells, enabling the parallel identification of multiple red blood cell antigens without cross-contamination in 1 min. This is combined with gentle mixing to rapidly concentrate the agglutinates, making both visual and digital determination of agglutination straightforward. A customized image analysis algorithm for automatically determining the agglutination state was developed to complement this microfluidic system. The acquired image is processed after the test. The blood type is determined using a machine learning algorithm based on a histogram of oriented gradients (HOG) and support vector machines (SVM). This allows digital analysis to mirror the classical laboratory procedure for blood-type determination more accurately. The system was trained using a validated dataset of 150 blood samples, presenting 750 different agglutination patterns. The combination of SVM and HOG achieved 94.10% in the micro-weighted performance evaluation. This integrated microfluidic chip-based platform provides a "sample-in and answer out" demonstration for red blood cell typing, ensuring fast and reliable results because minimum manual steps are involved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
logical发布了新的文献求助10
刚刚
领导范儿应助任性雁露采纳,获得10
3秒前
3秒前
3秒前
4秒前
我是老大应助小王爱科研采纳,获得10
4秒前
4秒前
findmoon发布了新的文献求助10
5秒前
6秒前
哈哈哈完成签到 ,获得积分10
6秒前
ying发布了新的文献求助10
6秒前
6秒前
wjx666777完成签到,获得积分20
6秒前
sukasuka发布了新的文献求助10
7秒前
AbyssK发布了新的文献求助20
8秒前
今后应助美好斓采纳,获得10
8秒前
burrrrr发布了新的文献求助10
8秒前
搜集达人应助121采纳,获得10
8秒前
8秒前
9秒前
香蕉孤风发布了新的文献求助30
10秒前
arlala完成签到,获得积分10
10秒前
listener完成签到,获得积分10
10秒前
Horizon发布了新的文献求助10
11秒前
李希有完成签到,获得积分20
11秒前
12秒前
12秒前
ruirui发布了新的文献求助10
12秒前
彭于晏应助小猫宝采纳,获得10
14秒前
陈颜发布了新的文献求助10
15秒前
ttm1983完成签到,获得积分10
16秒前
Lucas应助ying采纳,获得10
16秒前
美好斓发布了新的文献求助10
18秒前
21秒前
SciGPT应助wangqing采纳,获得10
22秒前
24秒前
25秒前
乐乐应助Lobectomy采纳,获得10
26秒前
27秒前
ruirui完成签到,获得积分10
27秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158072
求助须知:如何正确求助?哪些是违规求助? 2809436
关于积分的说明 7881999
捐赠科研通 2467898
什么是DOI,文献DOI怎么找? 1313783
科研通“疑难数据库(出版商)”最低求助积分说明 630538
版权声明 601943