An efficient CNN-LSTM network with spectral normalization and label smoothing technologies for SSVEP frequency recognition

计算机科学 规范化(社会学) 平滑的 脑-机接口 人工智能 模式识别(心理学) 卷积神经网络 语音识别 深度学习 脑电图 计算机视觉 心理学 人类学 精神科 社会学
作者
Yudong Pan,Jianbo Chen,Yangsong Zhang,Yu Zhang
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:19 (5): 056014-056014 被引量:32
标识
DOI:10.1088/1741-2552/ac8dc5
摘要

Objective. Steady-state visual evoked potentials (SSVEPs) based brain-computer interface (BCI) has received great interests owing to the high information transfer rate and available large number of targets. However, the performance of frequency recognition methods heavily depends on the amount of the calibration data for intra-subject classification. Some research adopted the deep learning (DL) algorithm to conduct the inter-subject classification, which could reduce the calculation procedure, but the performance still has large room to improve compared with the intra-subject classification.Approach. To address these issues, we proposed an efficient SSVEP DL NETwork (termed SSVEPNET) based on one-dimensional convolution and long short-term memory (LSTM) module. To enhance the performance of SSVEPNET, we adopted the spectral normalization and label smoothing technologies during implementing the network architecture. We evaluated the SSVEPNET and compared it with other methods for the intra- and inter-subject classification under different conditions, i.e. two datasets, two time-window lengths (1 s and 0.5 s), three sizes of training data.Main results. Under all the experimental settings, the proposed SSVEPNET achieved the highest average accuracy for the intra- and inter-subject classification on the two SSVEP datasets, when compared with other traditional and DL baseline methods.Significance. The extensive experimental results demonstrate that the proposed DL model holds promise to enhance frequency recognition performance in SSVEP-based BCIs. Besides, the mixed network structures with convolutional neural network and LSTM, and the spectral normalization and label smoothing could be useful optimization strategies to design efficient models for electroencephalography data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简简单单完成签到,获得积分10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
滴滴答答完成签到 ,获得积分10
2秒前
2秒前
3秒前
membrane完成签到,获得积分10
3秒前
4秒前
丘比特应助洋葱采纳,获得10
5秒前
Fluke完成签到,获得积分10
5秒前
小巧安柏发布了新的文献求助10
6秒前
健忘的芷荷完成签到,获得积分10
7秒前
隐形曼青应助小柯采纳,获得10
7秒前
同尘发布了新的文献求助10
7秒前
傲娇颖发布了新的文献求助10
7秒前
JamesPei应助爱死看文献啦采纳,获得10
8秒前
8秒前
8秒前
8秒前
liu完成签到 ,获得积分10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
胡萝卜发布了新的文献求助10
10秒前
西西弗完成签到,获得积分10
10秒前
小吕小吕完成签到,获得积分10
10秒前
Cat完成签到,获得积分0
10秒前
10秒前
隐形大米完成签到,获得积分10
11秒前
若水发布了新的文献求助10
11秒前
慕青应助呃呃诶采纳,获得20
12秒前
同尘完成签到,获得积分20
14秒前
丘比特应助许多年以后采纳,获得10
14秒前
14秒前
西西弗发布了新的文献求助30
15秒前
欣喜代秋发布了新的文献求助10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667657
求助须知:如何正确求助?哪些是违规求助? 3226188
关于积分的说明 9768281
捐赠科研通 2936167
什么是DOI,文献DOI怎么找? 1608152
邀请新用户注册赠送积分活动 759520
科研通“疑难数据库(出版商)”最低求助积分说明 735404