An efficient CNN-LSTM network with spectral normalization and label smoothing technologies for SSVEP frequency recognition

计算机科学 规范化(社会学) 平滑的 脑-机接口 人工智能 模式识别(心理学) 卷积神经网络 语音识别 深度学习 脑电图 计算机视觉 心理学 精神科 社会学 人类学
作者
Yudong Pan,Jianbo Chen,Yangsong Zhang,Yu Zhang
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:19 (5): 056014-056014 被引量:23
标识
DOI:10.1088/1741-2552/ac8dc5
摘要

Abstract Objective . Steady-state visual evoked potentials (SSVEPs) based brain–computer interface (BCI) has received great interests owing to the high information transfer rate and available large number of targets. However, the performance of frequency recognition methods heavily depends on the amount of the calibration data for intra-subject classification. Some research adopted the deep learning (DL) algorithm to conduct the inter-subject classification, which could reduce the calculation procedure, but the performance still has large room to improve compared with the intra-subject classification. Approach . To address these issues, we proposed an efficient SSVEP DL NETwork (termed SSVEPNET) based on one-dimensional convolution and long short-term memory (LSTM) module. To enhance the performance of SSVEPNET, we adopted the spectral normalization and label smoothing technologies during implementing the network architecture. We evaluated the SSVEPNET and compared it with other methods for the intra- and inter-subject classification under different conditions, i.e. two datasets, two time-window lengths (1 s and 0.5 s), three sizes of training data. Main results . Under all the experimental settings, the proposed SSVEPNET achieved the highest average accuracy for the intra- and inter-subject classification on the two SSVEP datasets, when compared with other traditional and DL baseline methods. Significance . The extensive experimental results demonstrate that the proposed DL model holds promise to enhance frequency recognition performance in SSVEP-based BCIs. Besides, the mixed network structures with convolutional neural network and LSTM, and the spectral normalization and label smoothing could be useful optimization strategies to design efficient models for electroencephalography data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
优雅的沛春完成签到 ,获得积分10
2秒前
2秒前
Liangyu关注了科研通微信公众号
3秒前
3秒前
yuan完成签到,获得积分10
4秒前
东曦完成签到,获得积分20
4秒前
4秒前
xiaoxiang_1001完成签到,获得积分10
5秒前
神秘人发布了新的文献求助10
5秒前
小龙女发布了新的文献求助10
6秒前
顾矜应助大大怪采纳,获得10
6秒前
6秒前
已秃发布了新的文献求助50
6秒前
7秒前
李花花发布了新的文献求助10
8秒前
ww完成签到 ,获得积分10
8秒前
9秒前
Orange应助aaaaaamiaoa采纳,获得10
10秒前
贪玩千儿应助小猪采纳,获得10
13秒前
13秒前
感动的怀梦完成签到,获得积分10
14秒前
15秒前
18秒前
神秘人完成签到,获得积分10
19秒前
21秒前
23秒前
打打应助合适钥匙采纳,获得10
24秒前
26秒前
27秒前
29秒前
李健的小迷弟应助HCHH采纳,获得50
29秒前
29秒前
酷酷的芙发布了新的文献求助10
31秒前
31秒前
胡说八道完成签到 ,获得积分10
32秒前
32秒前
33秒前
33秒前
不配.应助freshman3005采纳,获得30
33秒前
高分求助中
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217943
求助须知:如何正确求助?哪些是违规求助? 2867202
关于积分的说明 8155265
捐赠科研通 2534052
什么是DOI,文献DOI怎么找? 1366768
科研通“疑难数据库(出版商)”最低求助积分说明 644865
邀请新用户注册赠送积分活动 617880