An air quality prediction model based on improved Vanilla LSTM with multichannel input and multiroute output

计算机科学 领域(数学) 过程(计算) 趋同(经济学) 动态时间归整 人工智能 数据挖掘 钥匙(锁) 机器学习 模式识别(心理学) 数学 计算机安全 纯数学 经济 经济增长 操作系统
作者
Wei Fang,Runsu Zhu,Jerry Chun‐Wei Lin
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:211: 118422-118422 被引量:24
标识
DOI:10.1016/j.eswa.2022.118422
摘要

Long short-term memory (LSTM), especially vanilla LSTM (VLSTM), has been widely used in air quality prediction field. However, VLSTM has many more parameters, thereby making training slow and prediction performance unstable. The VLSTM network input data have not been selected for better efficiency. In this paper, we propose an air quality prediction model based on the improved VLSTM with multichannel input and multiroute output (IVLSTM-MCMR). The proposed model includes the IVLSTM and MCMR modules. The proposed IVLSTM module is developed by improving the VLSTM inner structure of VLSTM in order to reduce the number of parameters that help to accelerate the convergence. A new historical information usage approach is further proposed to obtain a stable training process. For the MCMR module, a multichannel data input model (MC) with an improved linear similarity dynamic time warping is introduced to choose the valid data as the input of IVLSTM. A multiroute output model (MR) is designed to integrate the results from MC, in which the results of different target stations with different features are output by different routes. We evaluate the proposed model with the collected data from Beijing, China, and the experimental results show that our model achieves improvements regarding the predication performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助无心采纳,获得10
刚刚
刚刚
1秒前
yuan发布了新的文献求助10
1秒前
Owen应助zk001采纳,获得10
1秒前
书南完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
沉静胜发布了新的文献求助10
5秒前
5秒前
YLY完成签到,获得积分20
5秒前
冷艳招牌发布了新的文献求助10
6秒前
6秒前
7秒前
oyc完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
9秒前
9秒前
YLY发布了新的文献求助30
9秒前
丁丽发布了新的文献求助10
9秒前
燕子归来完成签到,获得积分10
9秒前
明眸完成签到,获得积分10
10秒前
自然1111发布了新的文献求助10
11秒前
11秒前
12秒前
罗永昊发布了新的文献求助10
12秒前
袁气小笼包完成签到,获得积分10
13秒前
13秒前
CC完成签到,获得积分10
13秒前
bkagyin应助刘梦婷采纳,获得10
14秒前
14秒前
方圆几里发布了新的文献求助30
14秒前
CodeCraft应助Yulin Yu采纳,获得10
14秒前
Matthewwt完成签到,获得积分10
14秒前
wanci应助冷艳招牌采纳,获得10
14秒前
公孙朝雨完成签到 ,获得积分10
14秒前
kirito发布了新的文献求助10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961223
求助须知:如何正确求助?哪些是违规求助? 3507496
关于积分的说明 11136509
捐赠科研通 3239958
什么是DOI,文献DOI怎么找? 1790571
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803186