An air quality prediction model based on improved Vanilla LSTM with multichannel input and multiroute output

计算机科学 领域(数学) 过程(计算) 趋同(经济学) 动态时间归整 人工智能 数据挖掘 钥匙(锁) 机器学习 模式识别(心理学) 数学 计算机安全 纯数学 经济 经济增长 操作系统
作者
Wei Fang,Runsu Zhu,Jerry Chun‐Wei Lin
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:211: 118422-118422 被引量:24
标识
DOI:10.1016/j.eswa.2022.118422
摘要

Long short-term memory (LSTM), especially vanilla LSTM (VLSTM), has been widely used in air quality prediction field. However, VLSTM has many more parameters, thereby making training slow and prediction performance unstable. The VLSTM network input data have not been selected for better efficiency. In this paper, we propose an air quality prediction model based on the improved VLSTM with multichannel input and multiroute output (IVLSTM-MCMR). The proposed model includes the IVLSTM and MCMR modules. The proposed IVLSTM module is developed by improving the VLSTM inner structure of VLSTM in order to reduce the number of parameters that help to accelerate the convergence. A new historical information usage approach is further proposed to obtain a stable training process. For the MCMR module, a multichannel data input model (MC) with an improved linear similarity dynamic time warping is introduced to choose the valid data as the input of IVLSTM. A multiroute output model (MR) is designed to integrate the results from MC, in which the results of different target stations with different features are output by different routes. We evaluate the proposed model with the collected data from Beijing, China, and the experimental results show that our model achieves improvements regarding the predication performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辽阳太子发布了新的文献求助10
刚刚
Echo完成签到 ,获得积分10
刚刚
Orange应助王欣瑶采纳,获得10
1秒前
CipherSage应助tty615采纳,获得10
1秒前
浮游应助xh采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
鱼七完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
6秒前
睡觉的猫完成签到,获得积分10
6秒前
Queenie完成签到 ,获得积分10
6秒前
6秒前
Mengwei完成签到 ,获得积分10
6秒前
汉堡包应助轻松凡英采纳,获得10
6秒前
浮游应助Costing采纳,获得10
7秒前
7秒前
科研通AI5应助123采纳,获得30
7秒前
阳光羽毛发布了新的文献求助10
7秒前
cf完成签到,获得积分20
8秒前
8秒前
Lucas应助睡醒的尾椎骨采纳,获得80
9秒前
深情安青应助Kate采纳,获得10
9秒前
9秒前
阳光傲旋完成签到,获得积分10
9秒前
carrot发布了新的文献求助10
9秒前
冷酷迎丝发布了新的文献求助10
10秒前
10秒前
睡觉的猫发布了新的文献求助10
10秒前
10秒前
冷酷太清发布了新的文献求助10
10秒前
11秒前
nikonikoni发布了新的文献求助10
11秒前
11秒前
12秒前
明理乘云发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4942107
求助须知:如何正确求助?哪些是违规求助? 4207873
关于积分的说明 13079673
捐赠科研通 3986881
什么是DOI,文献DOI怎么找? 2182779
邀请新用户注册赠送积分活动 1198476
关于科研通互助平台的介绍 1110773