Human-computer interaction based health diagnostics using ResNet34 for tongue image classification

舌头 计算机科学 人工智能 卷积神经网络 深度学习 模式识别(心理学) 特征提取 人工神经网络 上下文图像分类 特征(语言学) 计算机视觉 图像(数学) 医学 病理 语言学 哲学
作者
Qingbin Zhuang,Senzhong Gan,Liangyu Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:226: 107096-107096 被引量:25
标识
DOI:10.1016/j.cmpb.2022.107096
摘要

Tongue diagnosis is one of the characteristics of traditional Chinese medicine (TCM), but traditional tongue diagnosis is affected by many factors, and its differential diagnosis results are not widely recognized. The appearance of tongue diagnosis instruments is the product of the modernization of tongue diagnosis, and it has standard and objective advantages in clinical practice. In this study, based on standard tongue images, a tongue image dataset and detection model were constructed. And based on the deep learning convolutional neural network (CNN) algorithm and visual question answering technology, a human-computer interaction intelligent health detector for tongue image recognition is constructed.In this research, 1420 tongue images were collected. After screening, experts judged them, and annotated the tongue images to form tongue image datasets. Then the artificial intelligence network framework based on deep learning convolutional neural network (CNN), that is, ResNet34, is applied to this dataset to automatically extract image features and realize tongue images classification. Finally, the VGG16 network framework is applied to the dataset to compare the classification model and compare with the classification effect.In this paper, relevant datasets were formed by collating the tongue images collected by annotation, which verified that the ResNet34 architecture could better perform the task of tooth mark and tongue feature recognition. Compared with similar learning tasks in existing studies, the accuracy of the teeth-printed tongue recognition model proposed in this study is more than 10% higher, which indicates that the CNN algorithm can distinguish teeth-printed tongue more accurately and effectively. At the same time, using datasets and models combined with visual question and answer technology, an AI health detector for TCM tongue image identification is designed, which can make health assessments and give suggestions to users.This study adopts a convolutional neural network model based on deep learning, which can reduce the extraction of tongue features more quickly and conveniently. At the same time, the model architecture has excellent performance and strong generalization ability and is more accurate in judging users' health status.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微笑书白完成签到,获得积分10
刚刚
jichao完成签到,获得积分10
1秒前
细心的小懒虫完成签到,获得积分10
1秒前
maox1aoxin应助项初蝶采纳,获得30
2秒前
生动的踏歌完成签到,获得积分10
2秒前
daijk发布了新的文献求助10
2秒前
蛋蛋完成签到 ,获得积分10
2秒前
ldy完成签到,获得积分10
4秒前
高高的冷之完成签到,获得积分10
5秒前
5秒前
小璐璐呀完成签到,获得积分10
6秒前
TAboo发布了新的文献求助10
6秒前
与梦随行2011完成签到,获得积分10
6秒前
夕赣完成签到 ,获得积分10
6秒前
6秒前
7秒前
科研通AI2S应助李李李李采纳,获得10
8秒前
woods完成签到,获得积分10
8秒前
大型海狮完成签到,获得积分10
9秒前
灰太狼大王完成签到 ,获得积分10
9秒前
cff完成签到,获得积分10
9秒前
我是老大应助alalalal采纳,获得10
10秒前
秦磊完成签到,获得积分10
10秒前
爆米花完成签到,获得积分10
10秒前
xiejuan发布了新的文献求助10
10秒前
lyne完成签到 ,获得积分10
11秒前
Rainor完成签到,获得积分10
11秒前
Clarissa完成签到,获得积分10
12秒前
桃柠完成签到,获得积分10
12秒前
12秒前
西屋发布了新的文献求助10
13秒前
科研通AI2S应助兮棠采纳,获得10
13秒前
香蕉觅云应助冰雪物语采纳,获得10
14秒前
Akim应助粥粥爱糊糊采纳,获得10
15秒前
16秒前
廉凌波发布了新的文献求助10
16秒前
16秒前
16秒前
linjiaying发布了新的文献求助10
16秒前
自由的信仰完成签到,获得积分10
17秒前
高分求助中
Evolution 10000
CANCER DISCOVERY癌症研究的新前沿:中国科研领军人物的创新构想 中国专刊 500
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158752
求助须知:如何正确求助?哪些是违规求助? 2809955
关于积分的说明 7884750
捐赠科研通 2468704
什么是DOI,文献DOI怎么找? 1314374
科研通“疑难数据库(出版商)”最低求助积分说明 630601
版权声明 602012