Human-computer interaction based health diagnostics using ResNet34 for tongue image classification

舌头 计算机科学 人工智能 卷积神经网络 深度学习 模式识别(心理学) 特征提取 人工神经网络 上下文图像分类 特征(语言学) 计算机视觉 图像(数学) 医学 病理 语言学 哲学
作者
Qingbin Zhuang,Senzhong Gan,Liangyu Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:226: 107096-107096 被引量:30
标识
DOI:10.1016/j.cmpb.2022.107096
摘要

Tongue diagnosis is one of the characteristics of traditional Chinese medicine (TCM), but traditional tongue diagnosis is affected by many factors, and its differential diagnosis results are not widely recognized. The appearance of tongue diagnosis instruments is the product of the modernization of tongue diagnosis, and it has standard and objective advantages in clinical practice. In this study, based on standard tongue images, a tongue image dataset and detection model were constructed. And based on the deep learning convolutional neural network (CNN) algorithm and visual question answering technology, a human-computer interaction intelligent health detector for tongue image recognition is constructed.In this research, 1420 tongue images were collected. After screening, experts judged them, and annotated the tongue images to form tongue image datasets. Then the artificial intelligence network framework based on deep learning convolutional neural network (CNN), that is, ResNet34, is applied to this dataset to automatically extract image features and realize tongue images classification. Finally, the VGG16 network framework is applied to the dataset to compare the classification model and compare with the classification effect.In this paper, relevant datasets were formed by collating the tongue images collected by annotation, which verified that the ResNet34 architecture could better perform the task of tooth mark and tongue feature recognition. Compared with similar learning tasks in existing studies, the accuracy of the teeth-printed tongue recognition model proposed in this study is more than 10% higher, which indicates that the CNN algorithm can distinguish teeth-printed tongue more accurately and effectively. At the same time, using datasets and models combined with visual question and answer technology, an AI health detector for TCM tongue image identification is designed, which can make health assessments and give suggestions to users.This study adopts a convolutional neural network model based on deep learning, which can reduce the extraction of tongue features more quickly and conveniently. At the same time, the model architecture has excellent performance and strong generalization ability and is more accurate in judging users' health status.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ljl完成签到,获得积分10
刚刚
lalala完成签到,获得积分20
刚刚
ybb完成签到,获得积分10
刚刚
球球了完成签到,获得积分10
1秒前
青易发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
小海发布了新的文献求助10
2秒前
joysa完成签到,获得积分10
3秒前
Jasper应助余生采纳,获得10
3秒前
yiyi完成签到,获得积分10
3秒前
Georges-09完成签到,获得积分10
3秒前
爱因斯宣发布了新的文献求助10
3秒前
谦让的莆完成签到 ,获得积分10
4秒前
4秒前
苏silence发布了新的文献求助10
5秒前
5秒前
科研小土豆完成签到,获得积分10
7秒前
小金鱼儿完成签到,获得积分10
7秒前
Danielle完成签到,获得积分10
7秒前
Paddi完成签到,获得积分10
8秒前
8秒前
Sxq完成签到,获得积分10
8秒前
liuhuo完成签到,获得积分10
8秒前
虎啊虎啊完成签到,获得积分10
8秒前
小海完成签到,获得积分10
9秒前
思源应助任冰冰采纳,获得30
9秒前
完美的凡灵完成签到,获得积分10
9秒前
10秒前
4564321发布了新的文献求助10
10秒前
11秒前
草莓布丁发布了新的文献求助10
11秒前
科目三应助徐佳达采纳,获得10
12秒前
传奇3应助香菜采纳,获得10
12秒前
盒子先生完成签到,获得积分10
12秒前
12秒前
13秒前
haoguo完成签到,获得积分10
13秒前
文献完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986586
求助须知:如何正确求助?哪些是违规求助? 3529069
关于积分的说明 11242999
捐赠科研通 3267514
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881175
科研通“疑难数据库(出版商)”最低求助积分说明 808582