Human-computer interaction based health diagnostics using ResNet34 for tongue image classification

舌头 计算机科学 人工智能 卷积神经网络 深度学习 模式识别(心理学) 特征提取 人工神经网络 上下文图像分类 特征(语言学) 计算机视觉 图像(数学) 医学 病理 语言学 哲学
作者
Qingbin Zhuang,Senzhong Gan,Liangyu Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:226: 107096-107096 被引量:44
标识
DOI:10.1016/j.cmpb.2022.107096
摘要

Tongue diagnosis is one of the characteristics of traditional Chinese medicine (TCM), but traditional tongue diagnosis is affected by many factors, and its differential diagnosis results are not widely recognized. The appearance of tongue diagnosis instruments is the product of the modernization of tongue diagnosis, and it has standard and objective advantages in clinical practice. In this study, based on standard tongue images, a tongue image dataset and detection model were constructed. And based on the deep learning convolutional neural network (CNN) algorithm and visual question answering technology, a human-computer interaction intelligent health detector for tongue image recognition is constructed.In this research, 1420 tongue images were collected. After screening, experts judged them, and annotated the tongue images to form tongue image datasets. Then the artificial intelligence network framework based on deep learning convolutional neural network (CNN), that is, ResNet34, is applied to this dataset to automatically extract image features and realize tongue images classification. Finally, the VGG16 network framework is applied to the dataset to compare the classification model and compare with the classification effect.In this paper, relevant datasets were formed by collating the tongue images collected by annotation, which verified that the ResNet34 architecture could better perform the task of tooth mark and tongue feature recognition. Compared with similar learning tasks in existing studies, the accuracy of the teeth-printed tongue recognition model proposed in this study is more than 10% higher, which indicates that the CNN algorithm can distinguish teeth-printed tongue more accurately and effectively. At the same time, using datasets and models combined with visual question and answer technology, an AI health detector for TCM tongue image identification is designed, which can make health assessments and give suggestions to users.This study adopts a convolutional neural network model based on deep learning, which can reduce the extraction of tongue features more quickly and conveniently. At the same time, the model architecture has excellent performance and strong generalization ability and is more accurate in judging users' health status.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
零可林发布了新的文献求助10
刚刚
刚刚
科研通AI6应助小贾采纳,获得10
1秒前
xuejie发布了新的文献求助10
1秒前
天天快乐应助康琪采纳,获得10
1秒前
葛根完成签到,获得积分10
1秒前
1秒前
思源应助czb666采纳,获得10
1秒前
doki发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
2秒前
科研通AI2S应助清脆初晴采纳,获得20
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
我是老大应助名金学南采纳,获得10
3秒前
3秒前
clear完成签到,获得积分10
3秒前
Jasper应助落后猫咪采纳,获得10
3秒前
nightgaunt发布了新的文献求助10
3秒前
3秒前
1733完成签到,获得积分10
3秒前
彭佳乐发布了新的文献求助10
4秒前
Aireen完成签到,获得积分10
4秒前
谢大喵应助进口小宵采纳,获得30
4秒前
4秒前
4秒前
CodeCraft应助lyn采纳,获得10
4秒前
牙瓜发布了新的文献求助20
4秒前
孤独的猕猴桃完成签到,获得积分10
5秒前
5秒前
5秒前
风清扬发布了新的文献求助10
5秒前
6秒前
get完成签到,获得积分10
6秒前
曾经友容完成签到 ,获得积分10
6秒前
燕子归来发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545991
求助须知:如何正确求助?哪些是违规求助? 4631933
关于积分的说明 14623692
捐赠科研通 4573623
什么是DOI,文献DOI怎么找? 2507694
邀请新用户注册赠送积分活动 1484354
关于科研通互助平台的介绍 1455637