Human-computer interaction based health diagnostics using ResNet34 for tongue image classification

舌头 计算机科学 人工智能 卷积神经网络 深度学习 模式识别(心理学) 特征提取 人工神经网络 上下文图像分类 特征(语言学) 计算机视觉 图像(数学) 医学 病理 语言学 哲学
作者
Qingbin Zhuang,Senzhong Gan,Liangyu Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:226: 107096-107096 被引量:44
标识
DOI:10.1016/j.cmpb.2022.107096
摘要

Tongue diagnosis is one of the characteristics of traditional Chinese medicine (TCM), but traditional tongue diagnosis is affected by many factors, and its differential diagnosis results are not widely recognized. The appearance of tongue diagnosis instruments is the product of the modernization of tongue diagnosis, and it has standard and objective advantages in clinical practice. In this study, based on standard tongue images, a tongue image dataset and detection model were constructed. And based on the deep learning convolutional neural network (CNN) algorithm and visual question answering technology, a human-computer interaction intelligent health detector for tongue image recognition is constructed.In this research, 1420 tongue images were collected. After screening, experts judged them, and annotated the tongue images to form tongue image datasets. Then the artificial intelligence network framework based on deep learning convolutional neural network (CNN), that is, ResNet34, is applied to this dataset to automatically extract image features and realize tongue images classification. Finally, the VGG16 network framework is applied to the dataset to compare the classification model and compare with the classification effect.In this paper, relevant datasets were formed by collating the tongue images collected by annotation, which verified that the ResNet34 architecture could better perform the task of tooth mark and tongue feature recognition. Compared with similar learning tasks in existing studies, the accuracy of the teeth-printed tongue recognition model proposed in this study is more than 10% higher, which indicates that the CNN algorithm can distinguish teeth-printed tongue more accurately and effectively. At the same time, using datasets and models combined with visual question and answer technology, an AI health detector for TCM tongue image identification is designed, which can make health assessments and give suggestions to users.This study adopts a convolutional neural network model based on deep learning, which can reduce the extraction of tongue features more quickly and conveniently. At the same time, the model architecture has excellent performance and strong generalization ability and is more accurate in judging users' health status.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Elissa完成签到,获得积分10
刚刚
shiiiny发布了新的文献求助10
1秒前
科研通AI6应助金鱼采纳,获得10
2秒前
跨越者完成签到,获得积分10
3秒前
o30完成签到,获得积分10
3秒前
4秒前
冯朋飞发布了新的文献求助10
5秒前
NANA完成签到,获得积分10
5秒前
5秒前
clcl驳回了Owen应助
6秒前
Kanas驳回了慕青应助
6秒前
6秒前
7秒前
哆啦十七应助迷人的天抒采纳,获得10
7秒前
xuuu完成签到,获得积分10
7秒前
8秒前
听话的八宝粥完成签到 ,获得积分10
8秒前
充电宝应助Geoer采纳,获得10
9秒前
12秒前
12秒前
夏侯觅风完成签到,获得积分10
12秒前
sean118完成签到 ,获得积分10
12秒前
syy发布了新的文献求助10
12秒前
13秒前
wk0635发布了新的文献求助10
13秒前
14秒前
华仔应助美满的冬卉采纳,获得10
15秒前
CodeCraft应助Flute采纳,获得10
15秒前
huangxin发布了新的文献求助10
16秒前
杨佳霖发布了新的文献求助10
16秒前
12发布了新的文献求助10
16秒前
16秒前
阳光he完成签到,获得积分10
17秒前
bkagyin应助shiiiny采纳,获得10
17秒前
研友_VZG7GZ应助夏侯觅风采纳,获得10
18秒前
19秒前
19秒前
LZ哲学家完成签到,获得积分10
20秒前
大号安全蛋完成签到,获得积分10
21秒前
csh完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360485
求助须知:如何正确求助?哪些是违规求助? 4491088
关于积分的说明 13981391
捐赠科研通 4393724
什么是DOI,文献DOI怎么找? 2413597
邀请新用户注册赠送积分活动 1406430
关于科研通互助平台的介绍 1380915