Co-Attention Fusion Network for Multimodal Skin Cancer Diagnosis

串联(数学) 卷积神经网络 模式识别(心理学) 保险丝(电气) 人工智能 计算机科学 块(置换群论) 深度学习 模式 模态(人机交互) 融合 特征提取 特征(语言学) 代表(政治) 图像融合 图像(数学) 数学 哲学 法学 电气工程 社会学 工程类 几何学 组合数学 政治 语言学 社会科学 政治学
作者
Xiaoyu He,Yong Wang,Shuang Zhao,Xiang Chen
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:133: 108990-108990 被引量:37
标识
DOI:10.1016/j.patcog.2022.108990
摘要

Recently, multimodal image-based methods have shown great performance in skin cancer diagnosis. These methods usually use convolutional neural networks (CNNs) to extract the features of two modalities (i.e., dermoscopy and clinical images), and fuse these features for classification. However, they commonly have the following two shortcomings: 1) the feature extraction processes of the two modalities are independent and lack cooperation, which may lead to limited representation ability of the extracted features, and 2) the multimodal fusion operation is a simple concatenation followed by convolutions, thus causing rough fusion features. To address these two issues, we propose a co-attention fusion network (CAFNet), which uses two branches to extract the features of dermoscopy and clinical images and a hyper-branch to refine and fuse these features at all stages of the network. Specifically, the hyper-branch is composed of multiple co-attention fusion (CAF) modules. In each CAF module, we first design a co-attention (CA) block with a cross-modal attention mechanism to achieve the cooperation of two modalities, which enhances the representation ability of the extracted features through mutual guidance between the two modalities. Following the CA block, we further propose an attention fusion (AF) block that dynamically selects appropriate fusion ratios to conduct the pixel-wise multimodal fusion, which can generate fine-grained fusion features. In addition, we propose a deep-supervised loss and a combined prediction method to obtain a more robust prediction result. The results show that CAFNet achieves the average accuracy of 76.8% on the seven-point checklist dataset and outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
water应助薛定谔的猫采纳,获得10
1秒前
HonamC发布了新的文献求助10
2秒前
3秒前
4秒前
6秒前
8秒前
坚定的可愁完成签到,获得积分10
9秒前
阿克66发布了新的文献求助10
10秒前
10秒前
10秒前
56565发布了新的文献求助10
10秒前
归尘发布了新的文献求助10
10秒前
11秒前
HonamC完成签到,获得积分10
11秒前
Gabriella完成签到,获得积分10
11秒前
郭郭完成签到,获得积分10
12秒前
遗憾完成签到,获得积分20
12秒前
幸福大白发布了新的文献求助10
13秒前
核桃发布了新的文献求助10
13秒前
13秒前
14秒前
研友_VZG7GZ应助Chimmy采纳,获得10
14秒前
15秒前
15秒前
思源应助Arzu采纳,获得10
17秒前
郭郭发布了新的文献求助10
18秒前
幸福大白发布了新的文献求助10
19秒前
19秒前
刘枫其发布了新的文献求助10
20秒前
小小鱼完成签到,获得积分10
22秒前
22秒前
22秒前
23秒前
look完成签到,获得积分10
24秒前
zhaoyichun发布了新的文献求助10
25秒前
25秒前
26秒前
阿克66完成签到,获得积分10
26秒前
莉莉酱发布了新的文献求助10
26秒前
myp完成签到,获得积分10
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993569
求助须知:如何正确求助?哪些是违规求助? 3534299
关于积分的说明 11265160
捐赠科研通 3274074
什么是DOI,文献DOI怎么找? 1806303
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712