A Local–Global Estimator Based on Large Kernel CNN and Transformer for Human Pose Estimation and Running Pose Measurement

姿势 人工智能 计算机科学 卷积神经网络 地点 估计员 编码器 变压器 模式识别(心理学) 计算机视觉 机器学习 工程类 数学 统计 操作系统 电气工程 哲学 电压 语言学
作者
Qingtian Wu,Yongfei Wu,Yu Zhang,Liming Zhang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:18
标识
DOI:10.1109/tim.2022.3200438
摘要

Running pose in the crowd can serve as an early warning of most abnormal events (e.g., chasing, fleeing and robbing), which can be achieved by human behavior analysis based on human pose measurement. Although deep convolutional neural networks (CNNs) have achieved impressive progress on human pose estimation, how to further improve the trade-off between estimation accuracy and speed remains an open issue. In this work, we first propose an efficient local-global estimator for human pose estimation (called LGPose). Then based on the keypoints estimated by our LGPose, a simple regression model is defined by using the geometry of the joints to achieve fast and accurate running pose measurement. To model the relationships between the human keypoints, visual transformer (ViT) encoder is adopted to learn the long-range interdependencies between them at the pixel level. However, the operation of transformer encoder is based on sequence processing that linearly projects 2D image patches to 1D tokens. It loses the important local information. Yet, locality is crucial since it has relevance to lines, edges and shapes. To learn the locality, we design effective CNN modules, rather than the original fully-connected network, into the feedforward module of ViT. Experiments on MPII and COCO Keypoint val2017 dataset show that the proposed LGPose achieves the best trade-off among the compared state-of-the-art methods. Moreover, we build a lightweight running movement dataset to verify the effectiveness of our LGPose. Based on the human pose estimated by our LGPose, we propose a regression model to measure running pose with an accuracy of 86.4% without training any other classifier. Our source codes and running dataset will be made publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助cslc采纳,获得10
刚刚
刚刚
刚刚
1秒前
萤火发布了新的文献求助10
1秒前
boss完成签到,获得积分10
1秒前
在水一方应助Thy采纳,获得10
2秒前
无奈的醉薇完成签到,获得积分10
3秒前
min发布了新的文献求助10
3秒前
无所谓发布了新的文献求助10
4秒前
JerryZ发布了新的文献求助10
5秒前
domingo发布了新的文献求助10
5秒前
jiangmj1990完成签到,获得积分10
6秒前
笛卡尔完成签到,获得积分10
7秒前
小垃圾完成签到 ,获得积分10
9秒前
扭扭车完成签到,获得积分10
10秒前
jiangmj1990发布了新的文献求助10
10秒前
10秒前
毕业比耶完成签到,获得积分20
11秒前
华仔应助牙牙采纳,获得10
13秒前
14秒前
科研通AI5应助zhaoyichun采纳,获得10
15秒前
脑洞疼应助JerryZ采纳,获得10
15秒前
大模型应助陈佳祥采纳,获得10
15秒前
yangxiaoxu完成签到 ,获得积分10
16秒前
魁梧的小霸王完成签到,获得积分10
17秒前
17秒前
AaronDP完成签到,获得积分10
19秒前
21秒前
科研通AI5应助Emma采纳,获得10
22秒前
23秒前
23秒前
彭于晏应助科研通管家采纳,获得10
24秒前
天天快乐应助科研通管家采纳,获得10
24秒前
烟花应助科研通管家采纳,获得10
24秒前
科目三应助科研通管家采纳,获得10
24秒前
王子安应助科研通管家采纳,获得10
24秒前
赘婿应助科研通管家采纳,获得10
24秒前
ED应助科研通管家采纳,获得10
24秒前
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993587
求助须知:如何正确求助?哪些是违规求助? 3534299
关于积分的说明 11265206
捐赠科研通 3274074
什么是DOI,文献DOI怎么找? 1806303
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712