A Local–Global Estimator Based on Large Kernel CNN and Transformer for Human Pose Estimation and Running Pose Measurement

姿势 人工智能 计算机科学 卷积神经网络 地点 估计员 编码器 变压器 模式识别(心理学) 计算机视觉 机器学习 工程类 数学 哲学 统计 语言学 电压 电气工程 操作系统
作者
Qingtian Wu,Yongfei Wu,Yu Zhang,Liming Zhang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:18
标识
DOI:10.1109/tim.2022.3200438
摘要

Running pose in the crowd can serve as an early warning of most abnormal events (e.g., chasing, fleeing and robbing), which can be achieved by human behavior analysis based on human pose measurement. Although deep convolutional neural networks (CNNs) have achieved impressive progress on human pose estimation, how to further improve the trade-off between estimation accuracy and speed remains an open issue. In this work, we first propose an efficient local-global estimator for human pose estimation (called LGPose). Then based on the keypoints estimated by our LGPose, a simple regression model is defined by using the geometry of the joints to achieve fast and accurate running pose measurement. To model the relationships between the human keypoints, visual transformer (ViT) encoder is adopted to learn the long-range interdependencies between them at the pixel level. However, the operation of transformer encoder is based on sequence processing that linearly projects 2D image patches to 1D tokens. It loses the important local information. Yet, locality is crucial since it has relevance to lines, edges and shapes. To learn the locality, we design effective CNN modules, rather than the original fully-connected network, into the feedforward module of ViT. Experiments on MPII and COCO Keypoint val2017 dataset show that the proposed LGPose achieves the best trade-off among the compared state-of-the-art methods. Moreover, we build a lightweight running movement dataset to verify the effectiveness of our LGPose. Based on the human pose estimated by our LGPose, we propose a regression model to measure running pose with an accuracy of 86.4% without training any other classifier. Our source codes and running dataset will be made publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangbing123发布了新的文献求助10
刚刚
DDXXC发布了新的文献求助10
刚刚
1秒前
larsy完成签到 ,获得积分10
2秒前
完美世界应助缓慢怜翠采纳,获得10
3秒前
功不唐捐发布了新的文献求助10
3秒前
jackten发布了新的文献求助10
3秒前
eghiefefe发布了新的文献求助150
4秒前
changping应助yzx采纳,获得10
4秒前
圣迭戈发布了新的文献求助10
5秒前
3D完成签到,获得积分10
5秒前
季咸鱼完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
7秒前
7秒前
风扇没有电完成签到,获得积分10
10秒前
甜羊羊发布了新的文献求助10
11秒前
sxmt123456789发布了新的文献求助30
11秒前
11秒前
ceeray23发布了新的文献求助20
11秒前
田様应助临澈采纳,获得10
12秒前
ZQP发布了新的文献求助10
12秒前
大个应助愉快的语山采纳,获得10
15秒前
ZQP完成签到,获得积分10
17秒前
xyhua925完成签到,获得积分10
17秒前
17秒前
功不唐捐完成签到,获得积分10
17秒前
caoyuya123完成签到 ,获得积分10
17秒前
iehaoang完成签到 ,获得积分10
19秒前
领导范儿应助Mn采纳,获得10
19秒前
20秒前
20秒前
小陈呀完成签到 ,获得积分10
21秒前
21秒前
桐桐应助清脆的夜白采纳,获得10
23秒前
CodeCraft应助无隅采纳,获得10
25秒前
xixilulixiu完成签到 ,获得积分10
26秒前
26秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208823
求助须知:如何正确求助?哪些是违规求助? 4386109
关于积分的说明 13660182
捐赠科研通 4245203
什么是DOI,文献DOI怎么找? 2329161
邀请新用户注册赠送积分活动 1326969
关于科研通互助平台的介绍 1279265