A Local–Global Estimator Based on Large Kernel CNN and Transformer for Human Pose Estimation and Running Pose Measurement

姿势 人工智能 计算机科学 卷积神经网络 地点 估计员 编码器 变压器 模式识别(心理学) 计算机视觉 机器学习 工程类 数学 统计 操作系统 电气工程 哲学 电压 语言学
作者
Qingtian Wu,Yongfei Wu,Yu Zhang,Liming Zhang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:18
标识
DOI:10.1109/tim.2022.3200438
摘要

Running pose in the crowd can serve as an early warning of most abnormal events (e.g., chasing, fleeing and robbing), which can be achieved by human behavior analysis based on human pose measurement. Although deep convolutional neural networks (CNNs) have achieved impressive progress on human pose estimation, how to further improve the trade-off between estimation accuracy and speed remains an open issue. In this work, we first propose an efficient local-global estimator for human pose estimation (called LGPose). Then based on the keypoints estimated by our LGPose, a simple regression model is defined by using the geometry of the joints to achieve fast and accurate running pose measurement. To model the relationships between the human keypoints, visual transformer (ViT) encoder is adopted to learn the long-range interdependencies between them at the pixel level. However, the operation of transformer encoder is based on sequence processing that linearly projects 2D image patches to 1D tokens. It loses the important local information. Yet, locality is crucial since it has relevance to lines, edges and shapes. To learn the locality, we design effective CNN modules, rather than the original fully-connected network, into the feedforward module of ViT. Experiments on MPII and COCO Keypoint val2017 dataset show that the proposed LGPose achieves the best trade-off among the compared state-of-the-art methods. Moreover, we build a lightweight running movement dataset to verify the effectiveness of our LGPose. Based on the human pose estimated by our LGPose, we propose a regression model to measure running pose with an accuracy of 86.4% without training any other classifier. Our source codes and running dataset will be made publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
圆圆的脑袋应助涛浪采纳,获得10
刚刚
隐形曼青应助皮皮桂采纳,获得10
1秒前
凝子老师完成签到,获得积分10
1秒前
奶糖发布了新的文献求助30
1秒前
TORCH完成签到 ,获得积分10
3秒前
李健的小迷弟应助lin采纳,获得10
3秒前
3秒前
4秒前
TT发布了新的文献求助10
4秒前
奶糖完成签到,获得积分10
7秒前
丘比特应助浪迹天涯采纳,获得10
8秒前
10秒前
10秒前
虚幻白玉发布了新的文献求助10
11秒前
清客完成签到 ,获得积分10
11秒前
传奇3应助阳阳采纳,获得10
11秒前
13秒前
皮皮桂发布了新的文献求助10
13秒前
Hello应助无奈傲菡采纳,获得10
13秒前
故意的傲玉应助FENGHUI采纳,获得10
14秒前
15秒前
科研通AI5应助nextconnie采纳,获得10
16秒前
James完成签到,获得积分10
16秒前
17秒前
Lucas应助sun采纳,获得10
18秒前
KristenStewart完成签到,获得积分10
20秒前
过时的热狗完成签到,获得积分10
20秒前
点点完成签到,获得积分10
20秒前
Zxc发布了新的文献求助10
21秒前
涨芝士完成签到 ,获得积分10
22秒前
23秒前
无名欧文关注了科研通微信公众号
23秒前
科研123完成签到,获得积分10
25秒前
crescent完成签到 ,获得积分10
27秒前
无奈傲菡发布了新的文献求助10
27秒前
烟花应助123号采纳,获得10
30秒前
超帅的遥完成签到,获得积分10
30秒前
Zxc完成签到,获得积分10
31秒前
lbt完成签到 ,获得积分10
32秒前
yao完成签到 ,获得积分10
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849