A Local–Global Estimator Based on Large Kernel CNN and Transformer for Human Pose Estimation and Running Pose Measurement

姿势 人工智能 计算机科学 卷积神经网络 地点 估计员 编码器 变压器 模式识别(心理学) 计算机视觉 机器学习 工程类 数学 哲学 统计 语言学 电压 电气工程 操作系统
作者
Qingtian Wu,Yongfei Wu,Yu Zhang,Liming Zhang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:18
标识
DOI:10.1109/tim.2022.3200438
摘要

Running pose in the crowd can serve as an early warning of most abnormal events (e.g., chasing, fleeing and robbing), which can be achieved by human behavior analysis based on human pose measurement. Although deep convolutional neural networks (CNNs) have achieved impressive progress on human pose estimation, how to further improve the trade-off between estimation accuracy and speed remains an open issue. In this work, we first propose an efficient local-global estimator for human pose estimation (called LGPose). Then based on the keypoints estimated by our LGPose, a simple regression model is defined by using the geometry of the joints to achieve fast and accurate running pose measurement. To model the relationships between the human keypoints, visual transformer (ViT) encoder is adopted to learn the long-range interdependencies between them at the pixel level. However, the operation of transformer encoder is based on sequence processing that linearly projects 2D image patches to 1D tokens. It loses the important local information. Yet, locality is crucial since it has relevance to lines, edges and shapes. To learn the locality, we design effective CNN modules, rather than the original fully-connected network, into the feedforward module of ViT. Experiments on MPII and COCO Keypoint val2017 dataset show that the proposed LGPose achieves the best trade-off among the compared state-of-the-art methods. Moreover, we build a lightweight running movement dataset to verify the effectiveness of our LGPose. Based on the human pose estimated by our LGPose, we propose a regression model to measure running pose with an accuracy of 86.4% without training any other classifier. Our source codes and running dataset will be made publicly available.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Trace2023发布了新的文献求助10
1秒前
2秒前
斯文败类应助缓慢的饼干采纳,获得10
2秒前
2秒前
3秒前
搜集达人应助无辜丹翠采纳,获得10
3秒前
3秒前
NexusExplorer应助可可采纳,获得10
3秒前
3秒前
3秒前
3秒前
4秒前
archeologist完成签到,获得积分10
4秒前
香蕉觅云应助MXL采纳,获得10
4秒前
4秒前
白子双完成签到,获得积分10
4秒前
4秒前
5秒前
kk酱完成签到,获得积分10
5秒前
花砸发布了新的文献求助10
5秒前
Leo完成签到,获得积分10
5秒前
何香稳发布了新的文献求助10
5秒前
李婷发布了新的文献求助10
6秒前
浮游应助超超采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
One应助科研通管家采纳,获得10
6秒前
老四发布了新的文献求助10
6秒前
kunkun应助科研通管家采纳,获得10
6秒前
酷波er应助djx采纳,获得10
6秒前
shhoing应助科研通管家采纳,获得10
6秒前
6秒前
Akim应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得30
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
nayil发布了新的文献求助10
6秒前
情怀应助科研通管家采纳,获得10
7秒前
学者完成签到,获得积分10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546244
求助须知:如何正确求助?哪些是违规求助? 4632131
关于积分的说明 14625170
捐赠科研通 4573805
什么是DOI,文献DOI怎么找? 2507814
邀请新用户注册赠送积分活动 1484466
关于科研通互助平台的介绍 1455707