拉曼光谱
塔菲尔方程
分解水
析氧
电催化剂
氢氧化物
脱氢
化学工程
化学
催化作用
过渡金属
无机化学
材料科学
物理
物理化学
电化学
光学
电极
有机化学
光催化
工程类
作者
Chao Jing,Taotao Yuan,Lili Li,Jianfeng Li,Zhengxin Qian,Jing Zhou,Yifeng Wang,Shibo Xi,Nian Zhang,Hong‐Ji Lin,Chien‐Te Chen,Zhiwei Hu,Da‐Wei Li,Linjuan Zhang,Jian‐Qiang Wang
出处
期刊:ACS Catalysis
日期:2022-08-05
卷期号:12 (16): 10276-10284
被引量:83
标识
DOI:10.1021/acscatal.2c01038
摘要
Understanding the catalysis mechanism of the sluggish oxygen evolution reaction (OER) involved in water splitting is of vital importance for the development of clean hydrogen energy. Earth-abundant transition-metal (oxy)hydroxide with low cost and high performance is one of the most promising OER catalysts. These catalysts often dynamically and heterogeneously transform from inactive pre-catalysts into active phases under operation conditions, and thus, the operando/in situ method is needed for the direct observation. Herein, using in situ Raman spectroscopy and density functional theory simulation, we correlate the OER activity with the dynamic crystal- and electronic-structure reconstruction of nano-sheet cobalt hydroxide. A complicated dual-transformation path is observed as the applied voltage is gradually increased; the pristine single-phase α-Co(OH)2 catalyst transforms into the hydrous Co(OH)2 phase through hydroxide intercalation, then to mixed β/γ-CoOOH phases through dehydration and dehydrogenation, and finally to OER-active γ-CoOOHx and β-CoOOHy. Moreover, the observed spectral and Tafel behaviors at different scan rates manifest the rate-dependent formation of the dual-active-phase, demonstrating the correlation between the OER ability and thermodynamics of structural reconstruction, which is critical in the fabrication of high-activity catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI