钙钛矿(结构)
量子点
材料科学
电子迁移率
能量转换效率
氧化物
电子
电子传输链
金属
光电子学
纳米技术
化学
结晶学
物理
量子力学
冶金
生物化学
作者
Jinpeng Wu,Minghua Li,Yan Jiang,Qiaoling Xu,Lede Xian,Haodan Guo,Jing Wan,Rui Wen,Yanyan Fang,Dongmei Xie,Lei Yan,Jin‐Song Hu,Yuan Lin
出处
期刊:ACS Nano
[American Chemical Society]
日期:2022-08-29
卷期号:16 (9): 15063-15071
被引量:14
标识
DOI:10.1021/acsnano.2c06171
摘要
Metal oxides are the most efficient electron transport layers (ETLs) in perovskite solar cells (PSCs). However, issues related to the bulk (i.e., insufficient electron mobility, unfavorable energy level position) and interface of metal oxide/perovskite (detrimental surface hydroxyl groups) limit the transport kinetics of photoinduced electrons and prevent PSCs from unleashing their theoretical efficiency potential. Herein, the inorganic InP colloid quantum dots (CQDs) with outstanding electron mobility (4600 cm2 V-1 s-1) and carboxyl (-COOH) terminal ligands were uniformly distributed into the metal oxide ETL to form consecutive electron transport channels. The hybrid InP CQD-based ETL demonstrates a more N-type characteristic with more than 3-fold improvement in electron mobility. The formation of the Sn-O-In bond facilitates electron extraction due to suitable energy level alignment between the ETL and perovskite. The strong interaction between uncoordinated Pb2+ at the perovskite/ETL interface and the -COO- in the ligand of InP CQDs reduces the density of defects in perovskite. As a result, the hybrid InP CQD-based ETL with an optimized InP ratio (18 wt %) boosts the power conversion efficiency of PSCs from 22.38 to 24.09% (certified efficiency of 23.43%). Meanwhile, the device demonstrates significantly improved photostability and atmospheric storage stability.
科研通智能强力驱动
Strongly Powered by AbleSci AI