Time-Dependent Failure Possibility-Based Design Optimization by Using Kriging Model and Fuzzy Simulation

克里金 数学优化 替代模型 计算机科学 模糊逻辑 约束(计算机辅助设计) 内环 最优化问题 控制理论(社会学) 数学 人工智能 控制器(灌溉) 机器学习 生物 控制(管理) 农学 几何学
作者
Xia Jiang,Zhenzhou Lü
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:60 (12): 6814-6824 被引量:1
标识
DOI:10.2514/1.j061489
摘要

Time-dependent failure possibility-based design optimization (T-PBDO) can minimize the general cost while meeting the failure possibility requirement of aircraft structure in the service life. The accuracy of the T-PBDO solution obtained by existing efficient methods may be problematic in the case of nonlinear performance functions or multiple minimum performance target points. To overcome this limitation, this paper proposes a new double-loop method based on the adaptive kriging (AK) model and fuzzy simulation (FS), referred to as DL-AK-FS, is used to efficiently solve T-PBDO. In DL-AK-FS, to replace the real constraint performance function for dealing with the time-dependent failure possibility (TDFP) constraint, the inner loop is to adaptively construct a single-loop kriging model of the constraint performance function in the FS candidate sample pool. The outer loop is to search the optimal design parameters by optimization algorithm. The kriging model is first built in an augmented space that is spanned by design parameters and fuzzy inputs, and then it is adaptively and timely updated during the optimization iteration. Moreover, the strategy of reducing the size of the FS candidate sample pool is adopted to further improve the efficiency of analyzing the inner TDFP while ensuring the accuracy of the optimization solution. The strategy of combining FS with the AK model can extend the engineering applicability of the DL-AK-FS in estimating the inner TDFP, which is not limited by the complexity of the time-dependent performance function. The optimization results show that the proposed DL-AK-FS method in this paper is efficient and accurate for solving T-PBDO.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无私秋珊应助西门百招采纳,获得10
刚刚
沧海一兰完成签到,获得积分10
1秒前
浮游应助橘子采纳,获得10
1秒前
猫猫爱吃煎饼完成签到 ,获得积分10
1秒前
Orange应助咕噜咕噜采纳,获得10
2秒前
4秒前
rk发布了新的文献求助12
4秒前
5秒前
杨金城完成签到,获得积分10
5秒前
田园完成签到,获得积分10
5秒前
小蘑菇应助无限小松鼠采纳,获得10
5秒前
科研通AI6应助万慧采纳,获得100
6秒前
7秒前
狗尾巴草发布了新的文献求助10
8秒前
金毛上将完成签到,获得积分10
8秒前
9秒前
谷谷完成签到,获得积分20
9秒前
10秒前
10秒前
10秒前
充电宝应助Leah采纳,获得10
10秒前
爱吃姜的面条完成签到,获得积分10
11秒前
domingo发布了新的文献求助30
11秒前
沉默的靖儿完成签到 ,获得积分10
12秒前
wanci应助快乐小狗采纳,获得10
13秒前
卡卡光波完成签到,获得积分10
13秒前
虚心的老头完成签到,获得积分10
13秒前
Ava应助Orange采纳,获得10
13秒前
玄音完成签到,获得积分10
14秒前
zzw完成签到,获得积分10
15秒前
15秒前
17秒前
18秒前
18秒前
18秒前
18秒前
Akim应助bhappy21采纳,获得10
20秒前
妮妮完成签到,获得积分10
21秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192038
求助须知:如何正确求助?哪些是违规求助? 4375147
关于积分的说明 13623731
捐赠科研通 4229284
什么是DOI,文献DOI怎么找? 2319783
邀请新用户注册赠送积分活动 1318375
关于科研通互助平台的介绍 1268503