Time-Dependent Failure Possibility-Based Design Optimization by Using Kriging Model and Fuzzy Simulation

克里金 数学优化 替代模型 计算机科学 模糊逻辑 约束(计算机辅助设计) 内环 最优化问题 控制理论(社会学) 数学 人工智能 控制器(灌溉) 机器学习 生物 控制(管理) 农学 几何学
作者
Xia Jiang,Zhenzhou Lü
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:60 (12): 6814-6824 被引量:1
标识
DOI:10.2514/1.j061489
摘要

Time-dependent failure possibility-based design optimization (T-PBDO) can minimize the general cost while meeting the failure possibility requirement of aircraft structure in the service life. The accuracy of the T-PBDO solution obtained by existing efficient methods may be problematic in the case of nonlinear performance functions or multiple minimum performance target points. To overcome this limitation, this paper proposes a new double-loop method based on the adaptive kriging (AK) model and fuzzy simulation (FS), referred to as DL-AK-FS, is used to efficiently solve T-PBDO. In DL-AK-FS, to replace the real constraint performance function for dealing with the time-dependent failure possibility (TDFP) constraint, the inner loop is to adaptively construct a single-loop kriging model of the constraint performance function in the FS candidate sample pool. The outer loop is to search the optimal design parameters by optimization algorithm. The kriging model is first built in an augmented space that is spanned by design parameters and fuzzy inputs, and then it is adaptively and timely updated during the optimization iteration. Moreover, the strategy of reducing the size of the FS candidate sample pool is adopted to further improve the efficiency of analyzing the inner TDFP while ensuring the accuracy of the optimization solution. The strategy of combining FS with the AK model can extend the engineering applicability of the DL-AK-FS in estimating the inner TDFP, which is not limited by the complexity of the time-dependent performance function. The optimization results show that the proposed DL-AK-FS method in this paper is efficient and accurate for solving T-PBDO.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵乂完成签到,获得积分10
刚刚
无辜绿竹发布了新的文献求助10
1秒前
wkc发布了新的文献求助10
1秒前
搜集达人应助鹤轩采纳,获得10
1秒前
情怀应助花粉过敏采纳,获得10
1秒前
玩命的凝天完成签到,获得积分10
1秒前
4秒前
科研通AI6应助科研疯采纳,获得10
4秒前
bkagyin应助xf潇洒哥采纳,获得20
4秒前
5秒前
大男完成签到,获得积分10
6秒前
6秒前
7秒前
FF完成签到 ,获得积分10
7秒前
123完成签到,获得积分10
10秒前
xiangwei发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
严明发布了新的文献求助10
13秒前
15秒前
浮游应助自然冥茗采纳,获得10
15秒前
花粉过敏发布了新的文献求助10
16秒前
脑洞疼应助犹豫晓啸采纳,获得10
17秒前
善学以致用应助张艺凡采纳,获得30
19秒前
一碗晚月完成签到,获得积分10
20秒前
y大哥略略略完成签到,获得积分10
20秒前
21秒前
22秒前
22秒前
英俊的铭应助y大哥略略略采纳,获得10
23秒前
23秒前
orixero应助minute采纳,获得10
23秒前
大力的宝川完成签到 ,获得积分10
23秒前
24秒前
24秒前
大道无痕发布了新的文献求助10
26秒前
科研通AI6应助程雯慧采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4898874
求助须知:如何正确求助?哪些是违规求助? 4179426
关于积分的说明 12974964
捐赠科研通 3943420
什么是DOI,文献DOI怎么找? 2163330
邀请新用户注册赠送积分活动 1181673
关于科研通互助平台的介绍 1087325