Time-Dependent Failure Possibility-Based Design Optimization by Using Kriging Model and Fuzzy Simulation

克里金 数学优化 替代模型 计算机科学 模糊逻辑 约束(计算机辅助设计) 内环 最优化问题 控制理论(社会学) 数学 人工智能 控制器(灌溉) 机器学习 几何学 控制(管理) 农学 生物
作者
Xia Jiang,Zhenzhou Lü
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:60 (12): 6814-6824 被引量:1
标识
DOI:10.2514/1.j061489
摘要

Time-dependent failure possibility-based design optimization (T-PBDO) can minimize the general cost while meeting the failure possibility requirement of aircraft structure in the service life. The accuracy of the T-PBDO solution obtained by existing efficient methods may be problematic in the case of nonlinear performance functions or multiple minimum performance target points. To overcome this limitation, this paper proposes a new double-loop method based on the adaptive kriging (AK) model and fuzzy simulation (FS), referred to as DL-AK-FS, is used to efficiently solve T-PBDO. In DL-AK-FS, to replace the real constraint performance function for dealing with the time-dependent failure possibility (TDFP) constraint, the inner loop is to adaptively construct a single-loop kriging model of the constraint performance function in the FS candidate sample pool. The outer loop is to search the optimal design parameters by optimization algorithm. The kriging model is first built in an augmented space that is spanned by design parameters and fuzzy inputs, and then it is adaptively and timely updated during the optimization iteration. Moreover, the strategy of reducing the size of the FS candidate sample pool is adopted to further improve the efficiency of analyzing the inner TDFP while ensuring the accuracy of the optimization solution. The strategy of combining FS with the AK model can extend the engineering applicability of the DL-AK-FS in estimating the inner TDFP, which is not limited by the complexity of the time-dependent performance function. The optimization results show that the proposed DL-AK-FS method in this paper is efficient and accurate for solving T-PBDO.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘肖完成签到,获得积分10
1秒前
蓝桥发布了新的文献求助10
2秒前
无限太阳发布了新的文献求助10
3秒前
lingyan hu关注了科研通微信公众号
3秒前
娇气的致远完成签到,获得积分10
3秒前
3秒前
kerio发布了新的文献求助10
4秒前
aaaiii完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
miao发布了新的文献求助10
7秒前
可爱的函函应助666采纳,获得10
8秒前
勇敢的前进完成签到,获得积分10
9秒前
那一年的河川完成签到,获得积分10
9秒前
搜集达人应助panpan采纳,获得10
9秒前
9秒前
10秒前
why发布了新的文献求助10
10秒前
无花果应助大鲨鱼采纳,获得10
11秒前
sugarxy应助怕黑天问采纳,获得200
12秒前
13秒前
13秒前
14秒前
15秒前
香蕉觅云应助路舟行采纳,获得10
15秒前
Wonderflu发布了新的文献求助20
15秒前
笨笨青筠发布了新的文献求助10
17秒前
蓝桥完成签到,获得积分20
17秒前
潇涯发布了新的文献求助50
17秒前
666发布了新的文献求助10
18秒前
大模型应助科研通管家采纳,获得10
19秒前
隐形曼青应助科研通管家采纳,获得10
19秒前
完美世界应助科研通管家采纳,获得10
19秒前
科目三应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
华仔应助科研通管家采纳,获得10
19秒前
深情安青应助科研通管家采纳,获得10
19秒前
李爱国应助科研通管家采纳,获得10
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149723
求助须知:如何正确求助?哪些是违规求助? 2800743
关于积分的说明 7841670
捐赠科研通 2458302
什么是DOI,文献DOI怎么找? 1308386
科研通“疑难数据库(出版商)”最低求助积分说明 628498
版权声明 601706