CASDD: Automatic Surface Defect Detection Using a Complementary Adversarial Network

鉴别器 分割 模式识别(心理学) 特征(语言学) 计算机科学 图像分割 GSM演进的增强数据速率 卷积神经网络 目标检测 特征提取 计算机视觉 编码(内存) 代表(政治) 人工智能 边缘检测 图像处理 图像(数学) 电信 语言学 哲学 探测器 政治 政治学 法学
作者
Sukun Tian,Pan Huang,Haifeng Ma,Jilai Wang,Xiaoli Zhou,Silu Zhang,Jinhua Zhou,Renkai Huang,Yangmin Li
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (20): 19583-19595 被引量:14
标识
DOI:10.1109/jsen.2022.3202179
摘要

Surface defect detection (SDD) plays an extremely important role in the manufacturing stage of products. However, this is a fundamental yet challenging task, mainly because the intraclass defects have large differences in shape and distribution, and low contrast between the object regions and background, and it is difficult to adapt to other materials. To address this problem, we propose a complementary adversarial network-driven SDD (CASDD) framework to automatically and accurately identify various types of texture defects. Specifically, CASDD consists of an encoding–decoding segmentation module with a specially designed loss measurement and a novel complementary discriminator mechanism. In addition, to model the defect boundaries and enhance the feature representation, the dilated convolutional (DC) layers with different rates and edge detection (ED) blocks are also incorporated into CASDD. Moreover, a complementary discrimination strategy is proposed, which employs two independent yet complementary discriminator modules to optimize the segmentation module more effectively. One discriminator identifies contextual features of the object regions in the input defect images, while the other discriminator focuses on edge detail differences between the ground truth and the segmented image. To obtain more edge information during training, a new composite loss measurement containing edge information and structural features is designed. Experimental results show that CASDD can be suitable for defect detection on four real-world and one artificial defect database, and its detection accuracy is significantly better than the state-of-the-art deep learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助wulong采纳,获得10
1秒前
pj发布了新的文献求助10
1秒前
CipherSage应助calm采纳,获得10
2秒前
高挑的不凡完成签到,获得积分10
4秒前
憨憨完成签到,获得积分10
5秒前
6秒前
niandon完成签到,获得积分10
7秒前
彳亍完成签到 ,获得积分10
8秒前
9秒前
充电宝应助pj采纳,获得10
9秒前
9秒前
曙光完成签到,获得积分10
10秒前
诚心的砖头完成签到 ,获得积分10
11秒前
谢昱完成签到,获得积分20
11秒前
kkk完成签到 ,获得积分10
11秒前
Nana发布了新的文献求助30
12秒前
13秒前
AndyLin完成签到,获得积分20
14秒前
谢昱发布了新的文献求助10
14秒前
大胆的草莓完成签到 ,获得积分10
15秒前
活泼的乐枫完成签到,获得积分10
16秒前
南浔完成签到,获得积分10
16秒前
mgl完成签到,获得积分10
17秒前
pj完成签到,获得积分20
19秒前
21秒前
21秒前
linbei完成签到,获得积分10
22秒前
23秒前
23秒前
25秒前
刘晓倩发布了新的文献求助10
25秒前
沉默冬易完成签到,获得积分10
26秒前
yzlsci完成签到,获得积分0
27秒前
clove发布了新的文献求助10
27秒前
阿泽发布了新的文献求助30
28秒前
谷粱寒烟发布了新的文献求助10
28秒前
江璃发布了新的文献求助10
29秒前
30秒前
研友_8DWkVZ完成签到,获得积分10
32秒前
光亮又晴完成签到 ,获得积分10
35秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137545
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787226
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300083
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023