CASDD: Automatic Surface Defect Detection Using a Complementary Adversarial Network

鉴别器 分割 模式识别(心理学) 特征(语言学) 计算机科学 图像分割 GSM演进的增强数据速率 卷积神经网络 目标检测 特征提取 计算机视觉 编码(内存) 代表(政治) 人工智能 边缘检测 图像处理 图像(数学) 政治学 电信 法学 语言学 哲学 探测器 政治
作者
Sukun Tian,Pan Huang,Haifeng Ma,Jilai Wang,Xiaoli Zhou,Silu Zhang,Jinhua Zhou,Renkai Huang,Yangmin Li
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:22 (20): 19583-19595 被引量:14
标识
DOI:10.1109/jsen.2022.3202179
摘要

Surface defect detection (SDD) plays an extremely important role in the manufacturing stage of products. However, this is a fundamental yet challenging task, mainly because the intraclass defects have large differences in shape and distribution, and low contrast between the object regions and background, and it is difficult to adapt to other materials. To address this problem, we propose a complementary adversarial network-driven SDD (CASDD) framework to automatically and accurately identify various types of texture defects. Specifically, CASDD consists of an encoding–decoding segmentation module with a specially designed loss measurement and a novel complementary discriminator mechanism. In addition, to model the defect boundaries and enhance the feature representation, the dilated convolutional (DC) layers with different rates and edge detection (ED) blocks are also incorporated into CASDD. Moreover, a complementary discrimination strategy is proposed, which employs two independent yet complementary discriminator modules to optimize the segmentation module more effectively. One discriminator identifies contextual features of the object regions in the input defect images, while the other discriminator focuses on edge detail differences between the ground truth and the segmented image. To obtain more edge information during training, a new composite loss measurement containing edge information and structural features is designed. Experimental results show that CASDD can be suitable for defect detection on four real-world and one artificial defect database, and its detection accuracy is significantly better than the state-of-the-art deep learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Vivian发布了新的文献求助20
1秒前
深情安青应助纤维素采纳,获得10
1秒前
2秒前
2秒前
迷人问兰发布了新的文献求助10
2秒前
林早上发布了新的文献求助10
3秒前
归尘发布了新的文献求助20
3秒前
东郭水云完成签到,获得积分10
3秒前
俊逸幻柏发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
调皮冷梅发布了新的文献求助10
5秒前
5秒前
5秒前
dengdengdeng发布了新的文献求助10
6秒前
岁月神偷发布了新的文献求助10
6秒前
iNk应助嗯嗯采纳,获得10
6秒前
科目三应助火星上含芙采纳,获得10
6秒前
7秒前
7秒前
1111111111111发布了新的文献求助10
8秒前
8秒前
zhouqiuqiu完成签到,获得积分10
8秒前
华仔应助joey采纳,获得10
9秒前
晏清发布了新的文献求助10
10秒前
王泳茵发布了新的文献求助10
12秒前
丘比特应助abbytang采纳,获得20
12秒前
完美的沉鱼完成签到 ,获得积分10
12秒前
Sunri完成签到,获得积分10
12秒前
wangtong完成签到,获得积分10
12秒前
13秒前
13秒前
Smile:)应助史萌采纳,获得60
13秒前
SHAO应助可乐采纳,获得10
14秒前
量子星尘发布了新的文献求助30
14秒前
清新的Q完成签到,获得积分10
14秒前
dengdengdeng完成签到,获得积分10
14秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954999
求助须知:如何正确求助?哪些是违规求助? 3501277
关于积分的说明 11102247
捐赠科研通 3231584
什么是DOI,文献DOI怎么找? 1786477
邀请新用户注册赠送积分活动 870090
科研通“疑难数据库(出版商)”最低求助积分说明 801798