A Real-Time Power Management Strategy for Hybrid Electrical Ships Under Highly Fluctuated Propulsion Loads

推进 汽车工程 电力系统 功率(物理) 电力航天器推进 计算机科学 负荷管理 海洋工程 工程类 可靠性工程 环境科学 电气工程 航空航天工程 物理 量子力学
作者
Peilin Xie,Sen Tan,Najmeh Bazmohammadi,Josep M. Guerrero,Juan C. Vásquez
出处
期刊:IEEE Systems Journal [Institute of Electrical and Electronics Engineers]
卷期号:17 (1): 395-406 被引量:17
标识
DOI:10.1109/jsyst.2022.3177843
摘要

The increasing demand for improving fuel efficiency of marine transportation has presented opportunities for the development of the power management system (PMS). Different from the terrestrial power system, a shipboard power system contains a large proportion of propulsion loads, which has the characteristics of high dynamics, periodicity, uncertainty, and high dependence on the marine environment. The propulsion load fluctuation induced by sea waves, in-and-out-of water effects, and changeable consumers requirements, may lead to a low power quality and fuel efficiency and it brings challenges in the development of the marine PMS. In addition, the fluctuated load profiles could also be volatile and unpredictable, which makes long-term load forecasting unrealizable and real-time load forecasting essential. To address these issues, a real-time two-layer PMS is proposed for hybrid-powered ship in this article, that can maintain a high fuel efficiency and a healthy state-of-charge (SOC) level over the voyage even in extreme sea conditions. To adapt well to the fluctuated and changeable load condition, a novel multistep load forecasting system is integrated to make accurate load forecasting in a very very short-term time scale (centisecond). Multiple cases studies are conducted under different cases of voyage time, sailing speed, wave conditions, and submergence ratios. The results show that the proposed PMS can significantly reduce the power tracking delays, improve the fuel efficiency, and maintain a healthy SOC level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诚心八宝粥完成签到,获得积分10
刚刚
1秒前
艺术家完成签到 ,获得积分10
2秒前
2秒前
2秒前
DreamMaker完成签到 ,获得积分10
2秒前
自由完成签到 ,获得积分10
2秒前
请勿继续发布了新的文献求助10
2秒前
聪明宛菡完成签到 ,获得积分10
3秒前
搜集达人应助木子采纳,获得10
4秒前
英姑应助伊丽莎白打工采纳,获得10
4秒前
5秒前
李浓发布了新的文献求助10
5秒前
长情绿凝完成签到,获得积分10
5秒前
5秒前
5秒前
FashionBoy应助科研废物采纳,获得10
6秒前
Ava应助zzznznnn采纳,获得10
6秒前
2799完成签到,获得积分10
6秒前
家家完成签到 ,获得积分10
7秒前
小牛同志完成签到,获得积分10
7秒前
7秒前
7秒前
西瓜霜完成签到 ,获得积分10
7秒前
深情安青应助aaaaa采纳,获得10
8秒前
8秒前
自由的过客完成签到,获得积分10
9秒前
转角一起走完成签到,获得积分20
9秒前
22完成签到,获得积分10
9秒前
9秒前
Zn应助伊丽莎白打工采纳,获得10
10秒前
江月渡完成签到,获得积分10
11秒前
研友_RLN0vZ发布了新的文献求助10
11秒前
虾仁发布了新的文献求助10
11秒前
mmx发布了新的文献求助10
11秒前
12秒前
ff发布了新的文献求助10
13秒前
图南完成签到,获得积分20
13秒前
zhl发布了新的文献求助10
13秒前
今后应助喜洋洋采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759