异质结
材料科学
范德瓦尔斯力
半导体
光电子学
电场
凝聚态物理
纳米技术
物理
分子
量子力学
作者
Fangfang Zhuang,Guoqiang Hao,Rui Zhou,Weilong Lei,Yilin Deng,Xiaojun Ye,Hongbo Li,Rui Zhang
标识
DOI:10.1016/j.mtcomm.2022.104295
摘要
For emerging two-dimension materials, transition-metal dichalcogenides and MXenes have arrested massive attractiveness of investigators. They are diffusely applied in photocatalytic water splitting, photodetector and capacitor on account of their attractive electronic and physical properties. To explore characteristics of MXene/Janus MXY heterostructures, Zr2CO2/MoSSe heterostructures are systematically investigated which employed the first-principles calculations. The results of band structure, density of states and band edge diagram illustrate that the Zr2CO2/MoSSe (Se atoms in the interface) heterostructure is an indirect band gap semiconductor (0.85 eV) and exhibits type II band arrangement which can separate carriers effectively. Comparison with individual Zr2CO2 and MoSSe, the formation of heterostructure can procure higher-intensity and wider-range optical absorption. In addition, the formation of Zr2CO2/MoSSe heterostructure implements high electron and hole mobilities along zigzag direction up to 2526.86 cm2V−1s−1 and 1462.51 cm2V−1s−1, respectively, which is remarkably profitable for upgrading its photocatalytic efficiency. To further comprehensively acquaint Zr2CO2/MoSSe heterostructure, various strains and electric fields are applied to modify its electrical and optical performance. Biaxial strains demand to maintain within − 6–2%, while electric fields require to sustain under positive electric fields. In consequence, the Zr2CO2/MoSSe van der Waals heterostructures conceive prosperous potential to be adopted in high-performance photocatalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI