控制理论(社会学)
人工神经网络
控制器(灌溉)
滑模控制
模糊逻辑
计算机科学
模式(计算机接口)
理论(学习稳定性)
控制工程
控制(管理)
工程类
非线性系统
人工智能
物理
量子力学
机器学习
农学
生物
操作系统
出处
期刊:IEEE Transactions on Circuits and Systems Ii-express Briefs
[Institute of Electrical and Electronics Engineers]
日期:2023-12-01
卷期号:70 (12): 4549-4553
被引量:1
标识
DOI:10.1109/tcsii.2023.3289988
摘要
This brief investigates the adaptive sliding mode control based on the radial basis function (RBF) neural network for T-S fuzzy fractional order systems. The RBF neural network is used to approximate the nonlinearities and external disturbances. Then, the switching control term is represented as a proportional integral control format to reduce the chattering phenomenon. The conditions of the sliding mode controller are given to ensure the stability of the control system. Finally, the efficiency of the conditions is demonstrated by a permanent magnet synchronous motor (PMSM) example, i.e., it shows that the designed controller can stabilize T-S fuzzy fractional order systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI