Leveraging Vision-Language Pre-Trained Model and Contrastive Learning for Enhanced Multimodal Sentiment Analysis

计算机科学 情绪分析 人工智能 模式 自然语言处理 多模式学习 特征学习 机器学习 社会学 社会科学
作者
Jieyu An,Wan Mohd Nazmee Wan Zainon,B. Ding
出处
期刊:Intelligent Automation and Soft Computing [Taylor & Francis]
卷期号:37 (2): 1673-1689
标识
DOI:10.32604/iasc.2023.039763
摘要

Multimodal sentiment analysis is an essential area of research in artificial intelligence that combines multiple modes, such as text and image, to accurately assess sentiment. However, conventional approaches that rely on unimodal pre-trained models for feature extraction from each modality often overlook the intrinsic connections of semantic information between modalities. This limitation is attributed to their training on unimodal data, and necessitates the use of complex fusion mechanisms for sentiment analysis. In this study, we present a novel approach that combines a vision-language pre-trained model with a proposed multimodal contrastive learning method. Our approach harnesses the power of transfer learning by utilizing a vision-language pre-trained model to extract both visual and textual representations in a unified framework. We employ a Transformer architecture to integrate these representations, thereby enabling the capture of rich semantic information in image-text pairs. To further enhance the representation learning of these pairs, we introduce our proposed multimodal contrastive learning method, which leads to improved performance in sentiment analysis tasks. Our approach is evaluated through extensive experiments on two publicly accessible datasets, where we demonstrate its effectiveness. We achieve a significant improvement in sentiment analysis accuracy, indicating the superiority of our approach over existing techniques. These results highlight the potential of multimodal sentiment analysis and underscore the importance of considering the intrinsic semantic connections between modalities for accurate sentiment assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天真书竹发布了新的文献求助10
刚刚
FashionBoy应助fl采纳,获得10
刚刚
超帅忆枫发布了新的文献求助10
2秒前
捞大完成签到,获得积分10
2秒前
3秒前
五档张诊人完成签到,获得积分10
3秒前
5秒前
5秒前
wenxin666发布了新的文献求助10
5秒前
小蜜蜂发布了新的文献求助10
7秒前
7秒前
Owen应助笑看风云采纳,获得10
7秒前
韭黄完成签到,获得积分20
9秒前
KouZL完成签到,获得积分10
9秒前
温瞳完成签到,获得积分10
9秒前
肚肚嘿嘿发布了新的文献求助30
10秒前
12秒前
12秒前
fl发布了新的文献求助10
12秒前
13秒前
fff完成签到 ,获得积分10
13秒前
春秋完成签到,获得积分10
14秒前
OP完成签到,获得积分10
14秒前
星辰大海应助小蜜蜂采纳,获得10
14秒前
llll发布了新的文献求助10
16秒前
16秒前
KIQING发布了新的文献求助10
17秒前
17秒前
xxxllllll发布了新的文献求助10
18秒前
林芟发布了新的文献求助10
20秒前
gzf213完成签到,获得积分10
21秒前
和谐乌冬面完成签到 ,获得积分10
22秒前
22秒前
24秒前
24秒前
25秒前
26秒前
哈尼完成签到,获得积分10
27秒前
林芟完成签到,获得积分10
28秒前
hhuajw完成签到,获得积分10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3772748
求助须知:如何正确求助?哪些是违规求助? 3318318
关于积分的说明 10189553
捐赠科研通 3033100
什么是DOI,文献DOI怎么找? 1664051
邀请新用户注册赠送积分活动 796079
科研通“疑难数据库(出版商)”最低求助积分说明 757245