Zero‐shot obstacle detection using panoramic vision in farmland

障碍物 人工智能 计算机科学 计算机视觉 弹丸 图像(数学) 编码器 集合(抽象数据类型) 模式识别(心理学) 地理 操作系统 考古 有机化学 化学 程序设计语言
作者
Tianhai Wang,Bin Chen,Ning Wang,Yuhan Ji,H. Li,Man Zhang
出处
期刊:Journal of Field Robotics [Wiley]
卷期号:41 (7): 2169-2183 被引量:3
标识
DOI:10.1002/rob.22224
摘要

Abstract Reliable obstacle detection is of great significance to the navigation technology of unmanned agricultural machinery. Currently, most of the previous works have achieved significant performance with the help of visual prior information of obstacles, where visual prior information refers to the visual features learned by models in the training stage. However, collecting enough annotated images for the training stage can be challenging. In the absence of annotated images, the current methods cannot perform optimally. To address the above problem, this paper presents a zero‐shot obstacle detection model based on the You Only Look Once X backbone, introducing the concept of zero‐shot learning into real‐time obstacle detection systems. Specifically, the cascade of encoder and decoder modules is appended to the presented model, and the integration of semantic space‐based classification and anchor‐free localization modules is used for zero‐shot obstacle detection. The feasibility of the proposed method was verified on the actual farmland test data set. The experimental results show that the F 1 scores of the seen obstacle (e.g., people) and the unseen obstacle (e.g., agricultural machinery) are 96.22% and 94.66%, respectively. The average detection time for each panoramic image is 52.52 ms (equivalent to 19.04 FPS). The proposed obstacle detection method exhibits superior performance in the situation where training samples of the target category are not available. Notably, the proposed model not only performs the correct classification of unseen obstacles, but also improves the detection performance of both seen and unseen obstacles. The proposed method achieves a balance between accuracy and detection speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangtong完成签到,获得积分10
2秒前
zss完成签到 ,获得积分10
2秒前
lxcy0612发布了新的文献求助10
2秒前
2秒前
Akim应助QixuGuo采纳,获得10
4秒前
4秒前
6秒前
掉头发的小白完成签到,获得积分10
7秒前
8秒前
鲤鱼石头完成签到,获得积分10
8秒前
思维隋发布了新的文献求助10
10秒前
麦子发布了新的文献求助10
10秒前
11秒前
C.Z.Young发布了新的文献求助10
12秒前
丘比特应助WAN采纳,获得10
12秒前
充电宝应助Tethys采纳,获得10
13秒前
14秒前
在水一方应助尊敬寒松采纳,获得10
18秒前
CipherSage应助旧城以西采纳,获得10
20秒前
桐桐应助jial采纳,获得10
20秒前
Fuckacdemic完成签到 ,获得积分10
22秒前
22秒前
24秒前
华仔应助曦梦源采纳,获得10
24秒前
宋祝福完成签到 ,获得积分10
25秒前
Orange应助花花采纳,获得10
27秒前
28秒前
Ayrin完成签到 ,获得积分10
28秒前
王大炮发布了新的文献求助10
30秒前
32秒前
爆米花应助鹤唳采纳,获得10
32秒前
zb发布了新的文献求助10
33秒前
LIUJIE完成签到,获得积分10
35秒前
尊敬寒松发布了新的文献求助10
35秒前
QixuGuo发布了新的文献求助10
36秒前
36秒前
37秒前
38秒前
斯文败类应助麦子采纳,获得10
39秒前
情怀应助王大炮采纳,获得10
39秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992986
求助须知:如何正确求助?哪些是违规求助? 3533726
关于积分的说明 11263679
捐赠科研通 3273550
什么是DOI,文献DOI怎么找? 1806095
邀请新用户注册赠送积分活动 882942
科研通“疑难数据库(出版商)”最低求助积分说明 809629