Zero‐shot obstacle detection using panoramic vision in farmland

障碍物 人工智能 计算机科学 计算机视觉 弹丸 图像(数学) 编码器 模式识别(心理学) 地理 操作系统 考古 有机化学 化学
作者
Tianhai Wang,Bin Chen,Ning Wang,Yuhan Ji,H. Li,Man Zhang
出处
期刊:Journal of Field Robotics [Wiley]
被引量:2
标识
DOI:10.1002/rob.22224
摘要

Abstract Reliable obstacle detection is of great significance to the navigation technology of unmanned agricultural machinery. Currently, most of the previous works have achieved significant performance with the help of visual prior information of obstacles, where visual prior information refers to the visual features learned by models in the training stage. However, collecting enough annotated images for the training stage can be challenging. In the absence of annotated images, the current methods cannot perform optimally. To address the above problem, this paper presents a zero‐shot obstacle detection model based on the You Only Look Once X backbone, introducing the concept of zero‐shot learning into real‐time obstacle detection systems. Specifically, the cascade of encoder and decoder modules is appended to the presented model, and the integration of semantic space‐based classification and anchor‐free localization modules is used for zero‐shot obstacle detection. The feasibility of the proposed method was verified on the actual farmland test data set. The experimental results show that the F 1 scores of the seen obstacle (e.g., people) and the unseen obstacle (e.g., agricultural machinery) are 96.22% and 94.66%, respectively. The average detection time for each panoramic image is 52.52 ms (equivalent to 19.04 FPS). The proposed obstacle detection method exhibits superior performance in the situation where training samples of the target category are not available. Notably, the proposed model not only performs the correct classification of unseen obstacles, but also improves the detection performance of both seen and unseen obstacles. The proposed method achieves a balance between accuracy and detection speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任风完成签到,获得积分10
1秒前
小孟吖发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
2秒前
刻苦大门完成签到 ,获得积分10
2秒前
隐形曼青应助苹果颜采纳,获得10
3秒前
3秒前
CTX发布了新的文献求助10
3秒前
河河发布了新的文献求助20
4秒前
曾经的姒发布了新的文献求助10
4秒前
是爱看文献的小姐姐一枚吖完成签到,获得积分10
4秒前
欢呼阁完成签到,获得积分20
4秒前
潘Pdm完成签到,获得积分10
5秒前
Ting发布了新的文献求助30
6秒前
Divina0407完成签到 ,获得积分10
7秒前
斯文败类应助NZH采纳,获得10
7秒前
zizi发布了新的文献求助10
8秒前
dh发布了新的文献求助10
8秒前
8秒前
9秒前
Orange应助今天更帅一些采纳,获得10
9秒前
9秒前
9秒前
李爱国应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
pcr163应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
pluto应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
19应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
脑洞疼应助科研通管家采纳,获得80
11秒前
英姑应助科研通管家采纳,获得10
11秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3232602
求助须知:如何正确求助?哪些是违规求助? 2879404
关于积分的说明 8211127
捐赠科研通 2546860
什么是DOI,文献DOI怎么找? 1376416
科研通“疑难数据库(出版商)”最低求助积分说明 647609
邀请新用户注册赠送积分活动 622915