Improving crop modeling in saline soils by predicting root length density dynamics with machine learning algorithms

土壤水分 土壤盐分 数学 叶面积指数 均方误差 克里金 作物产量 土壤科学 环境科学 算法 农学 统计 生物
作者
Liming Dong,Guoqing Lei,Jiesheng Huang,Wenzhi Zeng
出处
期刊:Agricultural Water Management [Elsevier]
卷期号:287: 108425-108425 被引量:5
标识
DOI:10.1016/j.agwat.2023.108425
摘要

Crop modeling is an effective tool for simulating crop growth under various agricultural water and salinity management practices. However, most crop models fail to describe the root dynamics in response to soil stresses adequately. To address this issue, field experiments were conducted by planting sunflowers in saline soils. Three machine learning (ML) models of random forest (RF), gaussian process regression (GPR), and extreme gradient boosting (XGBoost) were initially introduced for predicting root length density (RLD). Then, by coupling with a crop model SWAP, the soil salt content (SSC), soil water content (SWC), and crop growth indicators of leaf area index (LAI) and dry matter (DM) were simulated. Results show that RF and XGBoost models could predict RLD more accurately than the GPR model, with root mean square error (RMSE) lower than 0.473 cm cm-3. Compared to using a typical cubic polynomial function (CPF) of RLD in the SWAP model, similar SWC and SSC simulation results were obtained based on the ML models. However, for the crop growth simulation, the performances of ML models were significantly better than the CPF. Especially for LAI simulation in the high salinity fields, the relative root mean square error (RRMSE) in the RF model was 0.222–0.282 lower than in the CPF. Moreover, compared to the XGBoost model of RLD, more accurate and stable simulation results of SWC, SSC, and LAI were obtained based on the RF model. These results illustrate that ML models, especially the RF model, can be used to quantify RLD dynamics and improve crop modeling performances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
呆萌蜻蜓完成签到,获得积分20
2秒前
桃子发布了新的文献求助10
2秒前
Cathy发布了新的文献求助10
4秒前
4秒前
LHL发布了新的文献求助10
4秒前
4秒前
6秒前
6秒前
8秒前
热心丹南发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
14秒前
17秒前
suk完成签到,获得积分10
20秒前
lifeline发布了新的文献求助30
20秒前
20秒前
aaa发布了新的文献求助20
23秒前
28秒前
sansan完成签到 ,获得积分10
31秒前
wanci应助义气碧菡采纳,获得10
32秒前
星空完成签到 ,获得积分10
32秒前
32秒前
34秒前
34秒前
华仔应助小鱼采纳,获得10
36秒前
37秒前
37秒前
39秒前
40秒前
40秒前
zxy完成签到,获得积分10
40秒前
42秒前
gwen发布了新的文献求助10
42秒前
44秒前
44秒前
中和皇极发布了新的文献求助10
44秒前
义气碧菡发布了新的文献求助10
45秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330222
求助须知:如何正确求助?哪些是违规求助? 2959810
关于积分的说明 8597138
捐赠科研通 2638270
什么是DOI,文献DOI怎么找? 1444230
科研通“疑难数据库(出版商)”最低求助积分说明 669074
邀请新用户注册赠送积分活动 656624