Improving crop modeling in saline soils by predicting root length density dynamics with machine learning algorithms

土壤水分 土壤盐分 数学 叶面积指数 均方误差 克里金 作物产量 土壤科学 环境科学 算法 农学 统计 生物
作者
Liming Dong,Guoqing Lei,Jiesheng Huang,Wenzhi Zeng
出处
期刊:Agricultural Water Management [Elsevier]
卷期号:287: 108425-108425 被引量:5
标识
DOI:10.1016/j.agwat.2023.108425
摘要

Crop modeling is an effective tool for simulating crop growth under various agricultural water and salinity management practices. However, most crop models fail to describe the root dynamics in response to soil stresses adequately. To address this issue, field experiments were conducted by planting sunflowers in saline soils. Three machine learning (ML) models of random forest (RF), gaussian process regression (GPR), and extreme gradient boosting (XGBoost) were initially introduced for predicting root length density (RLD). Then, by coupling with a crop model SWAP, the soil salt content (SSC), soil water content (SWC), and crop growth indicators of leaf area index (LAI) and dry matter (DM) were simulated. Results show that RF and XGBoost models could predict RLD more accurately than the GPR model, with root mean square error (RMSE) lower than 0.473 cm cm-3. Compared to using a typical cubic polynomial function (CPF) of RLD in the SWAP model, similar SWC and SSC simulation results were obtained based on the ML models. However, for the crop growth simulation, the performances of ML models were significantly better than the CPF. Especially for LAI simulation in the high salinity fields, the relative root mean square error (RRMSE) in the RF model was 0.222–0.282 lower than in the CPF. Moreover, compared to the XGBoost model of RLD, more accurate and stable simulation results of SWC, SSC, and LAI were obtained based on the RF model. These results illustrate that ML models, especially the RF model, can be used to quantify RLD dynamics and improve crop modeling performances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝天发布了新的文献求助10
刚刚
赫赫完成签到,获得积分10
1秒前
nn发布了新的文献求助10
1秒前
隐形萃发布了新的文献求助10
2秒前
情怀应助艾玛采纳,获得10
3秒前
xiuxiu完成签到 ,获得积分10
4秒前
5秒前
走走发布了新的文献求助10
5秒前
zhaoshao完成签到,获得积分10
5秒前
宋虹完成签到,获得积分10
7秒前
8秒前
QYZ完成签到 ,获得积分10
8秒前
zpc发布了新的文献求助10
10秒前
10秒前
怜然完成签到 ,获得积分10
10秒前
走走完成签到,获得积分10
11秒前
人生若只如初见给人生若只如初见的求助进行了留言
12秒前
终归完成签到 ,获得积分10
12秒前
梁敏完成签到,获得积分10
13秒前
Nnn完成签到,获得积分10
13秒前
我要毕业发布了新的文献求助10
13秒前
lrrrrrr完成签到,获得积分10
13秒前
bbanshan完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
Shengkun完成签到,获得积分10
15秒前
lyncee给lyncee的求助进行了留言
16秒前
鳗鱼梦寒发布了新的文献求助10
16秒前
YLi_746完成签到,获得积分10
18秒前
蜜雪冰城完成签到,获得积分10
19秒前
20秒前
最爱吃火锅完成签到,获得积分10
20秒前
Owen应助倾听采纳,获得10
20秒前
小张呢好完成签到,获得积分10
20秒前
20秒前
yz完成签到,获得积分10
22秒前
Criminology34应助liu采纳,获得10
24秒前
听荷77777完成签到,获得积分10
25秒前
chenxilulu完成签到,获得积分10
25秒前
lllllsy完成签到,获得积分10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603632
求助须知:如何正确求助?哪些是违规求助? 4688639
关于积分的说明 14855202
捐赠科研通 4694366
什么是DOI,文献DOI怎么找? 2540896
邀请新用户注册赠送积分活动 1507124
关于科研通互助平台的介绍 1471806