Improving crop modeling in saline soils by predicting root length density dynamics with machine learning algorithms

土壤水分 土壤盐分 数学 叶面积指数 均方误差 克里金 作物产量 土壤科学 环境科学 算法 农学 统计 生物
作者
Liming Dong,Guoqing Lei,Jiesheng Huang,Wenzhi Zeng
出处
期刊:Agricultural Water Management [Elsevier]
卷期号:287: 108425-108425 被引量:5
标识
DOI:10.1016/j.agwat.2023.108425
摘要

Crop modeling is an effective tool for simulating crop growth under various agricultural water and salinity management practices. However, most crop models fail to describe the root dynamics in response to soil stresses adequately. To address this issue, field experiments were conducted by planting sunflowers in saline soils. Three machine learning (ML) models of random forest (RF), gaussian process regression (GPR), and extreme gradient boosting (XGBoost) were initially introduced for predicting root length density (RLD). Then, by coupling with a crop model SWAP, the soil salt content (SSC), soil water content (SWC), and crop growth indicators of leaf area index (LAI) and dry matter (DM) were simulated. Results show that RF and XGBoost models could predict RLD more accurately than the GPR model, with root mean square error (RMSE) lower than 0.473 cm cm-3. Compared to using a typical cubic polynomial function (CPF) of RLD in the SWAP model, similar SWC and SSC simulation results were obtained based on the ML models. However, for the crop growth simulation, the performances of ML models were significantly better than the CPF. Especially for LAI simulation in the high salinity fields, the relative root mean square error (RRMSE) in the RF model was 0.222–0.282 lower than in the CPF. Moreover, compared to the XGBoost model of RLD, more accurate and stable simulation results of SWC, SSC, and LAI were obtained based on the RF model. These results illustrate that ML models, especially the RF model, can be used to quantify RLD dynamics and improve crop modeling performances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
方法完成签到,获得积分10
1秒前
Hello应助Mikey_Teng采纳,获得10
2秒前
流水发布了新的文献求助10
4秒前
4秒前
慕青应助111采纳,获得10
5秒前
草莓不梅完成签到,获得积分20
6秒前
义勇完成签到 ,获得积分10
6秒前
脑洞疼应助zuoyou采纳,获得10
8秒前
ymx完成签到,获得积分10
8秒前
冷傲夏槐发布了新的文献求助10
8秒前
9秒前
尤之尤之完成签到,获得积分10
9秒前
科研通AI6.1应助陶l采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
wuming完成签到,获得积分10
11秒前
小蘑菇应助wang采纳,获得10
11秒前
11秒前
11秒前
潇潇完成签到,获得积分10
13秒前
所所应助眼睛大的迎梦采纳,获得10
13秒前
华仔应助GRX1110采纳,获得10
14秒前
Mikey_Teng完成签到,获得积分20
15秒前
vikoel完成签到,获得积分10
15秒前
16秒前
饮汽水发布了新的文献求助10
16秒前
西西完成签到,获得积分10
16秒前
Mikey_Teng发布了新的文献求助10
17秒前
17秒前
19秒前
曹能豪发布了新的文献求助10
20秒前
浩然完成签到,获得积分10
20秒前
20秒前
所所应助feisun采纳,获得10
21秒前
21秒前
想人陪的万言完成签到,获得积分10
21秒前
斯文败类应助科研通管家采纳,获得10
21秒前
Orange应助科研通管家采纳,获得10
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742729
求助须知:如何正确求助?哪些是违规求助? 5409935
关于积分的说明 15345601
捐赠科研通 4883834
什么是DOI,文献DOI怎么找? 2625399
邀请新用户注册赠送积分活动 1574188
关于科研通互助平台的介绍 1531146