Improving crop modeling in saline soils by predicting root length density dynamics with machine learning algorithms

土壤水分 土壤盐分 数学 叶面积指数 均方误差 克里金 作物产量 土壤科学 环境科学 算法 农学 统计 生物
作者
Liming Dong,Guoqing Lei,Jiesheng Huang,Wenzhi Zeng
出处
期刊:Agricultural Water Management [Elsevier BV]
卷期号:287: 108425-108425 被引量:5
标识
DOI:10.1016/j.agwat.2023.108425
摘要

Crop modeling is an effective tool for simulating crop growth under various agricultural water and salinity management practices. However, most crop models fail to describe the root dynamics in response to soil stresses adequately. To address this issue, field experiments were conducted by planting sunflowers in saline soils. Three machine learning (ML) models of random forest (RF), gaussian process regression (GPR), and extreme gradient boosting (XGBoost) were initially introduced for predicting root length density (RLD). Then, by coupling with a crop model SWAP, the soil salt content (SSC), soil water content (SWC), and crop growth indicators of leaf area index (LAI) and dry matter (DM) were simulated. Results show that RF and XGBoost models could predict RLD more accurately than the GPR model, with root mean square error (RMSE) lower than 0.473 cm cm-3. Compared to using a typical cubic polynomial function (CPF) of RLD in the SWAP model, similar SWC and SSC simulation results were obtained based on the ML models. However, for the crop growth simulation, the performances of ML models were significantly better than the CPF. Especially for LAI simulation in the high salinity fields, the relative root mean square error (RRMSE) in the RF model was 0.222–0.282 lower than in the CPF. Moreover, compared to the XGBoost model of RLD, more accurate and stable simulation results of SWC, SSC, and LAI were obtained based on the RF model. These results illustrate that ML models, especially the RF model, can be used to quantify RLD dynamics and improve crop modeling performances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助Chen采纳,获得10
1秒前
ED应助zhy采纳,获得10
1秒前
Krystal完成签到,获得积分10
1秒前
微笑焱彬发布了新的文献求助10
1秒前
zhang发布了新的文献求助10
2秒前
科目三应助一定行采纳,获得10
2秒前
2秒前
z11完成签到,获得积分10
2秒前
mof发布了新的文献求助10
2秒前
3秒前
Ava应助kaola采纳,获得10
3秒前
小乐应助cxm666采纳,获得10
4秒前
4秒前
5秒前
6秒前
orixero应助ysw采纳,获得10
6秒前
7秒前
chang发布了新的文献求助10
7秒前
搬砖人完成签到,获得积分10
8秒前
likexin关注了科研通微信公众号
8秒前
9秒前
jefflau发布了新的文献求助10
9秒前
酷酷雍完成签到 ,获得积分10
10秒前
10秒前
wulin314完成签到,获得积分10
10秒前
王瑞钧关注了科研通微信公众号
10秒前
昵称发布了新的文献求助10
11秒前
旧巷发布了新的文献求助10
11秒前
11秒前
11秒前
脑洞疼应助mof采纳,获得10
11秒前
祖安露完成签到,获得积分10
12秒前
西瓜完成签到,获得积分10
12秒前
mm完成签到,获得积分10
13秒前
15秒前
布偶2007发布了新的文献求助10
15秒前
丘比特应助roclie采纳,获得10
15秒前
15秒前
8R60d8应助ziyetong采纳,获得20
15秒前
mm发布了新的文献求助10
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961980
求助须知:如何正确求助?哪些是违规求助? 3508280
关于积分的说明 11140173
捐赠科研通 3240897
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352