已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improving crop modeling in saline soils by predicting root length density dynamics with machine learning algorithms

土壤水分 土壤盐分 数学 叶面积指数 均方误差 克里金 作物产量 土壤科学 环境科学 算法 农学 统计 生物
作者
Liming Dong,Guoqing Lei,Jiesheng Huang,Wenzhi Zeng
出处
期刊:Agricultural Water Management [Elsevier BV]
卷期号:287: 108425-108425 被引量:5
标识
DOI:10.1016/j.agwat.2023.108425
摘要

Crop modeling is an effective tool for simulating crop growth under various agricultural water and salinity management practices. However, most crop models fail to describe the root dynamics in response to soil stresses adequately. To address this issue, field experiments were conducted by planting sunflowers in saline soils. Three machine learning (ML) models of random forest (RF), gaussian process regression (GPR), and extreme gradient boosting (XGBoost) were initially introduced for predicting root length density (RLD). Then, by coupling with a crop model SWAP, the soil salt content (SSC), soil water content (SWC), and crop growth indicators of leaf area index (LAI) and dry matter (DM) were simulated. Results show that RF and XGBoost models could predict RLD more accurately than the GPR model, with root mean square error (RMSE) lower than 0.473 cm cm-3. Compared to using a typical cubic polynomial function (CPF) of RLD in the SWAP model, similar SWC and SSC simulation results were obtained based on the ML models. However, for the crop growth simulation, the performances of ML models were significantly better than the CPF. Especially for LAI simulation in the high salinity fields, the relative root mean square error (RRMSE) in the RF model was 0.222–0.282 lower than in the CPF. Moreover, compared to the XGBoost model of RLD, more accurate and stable simulation results of SWC, SSC, and LAI were obtained based on the RF model. These results illustrate that ML models, especially the RF model, can be used to quantify RLD dynamics and improve crop modeling performances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ff完成签到,获得积分10
1秒前
科研通AI5应助眉洛采纳,获得10
3秒前
freezing发布了新的文献求助10
4秒前
淡淡完成签到,获得积分20
5秒前
默默小鸽子完成签到,获得积分10
6秒前
7秒前
曲奇发布了新的文献求助20
7秒前
hh完成签到 ,获得积分10
8秒前
共享精神应助lanyatian采纳,获得10
9秒前
9秒前
张emo发布了新的文献求助10
10秒前
11秒前
12秒前
袁翰将军完成签到 ,获得积分10
13秒前
15秒前
Yii发布了新的文献求助30
16秒前
烟花应助MeetAgainLZH采纳,获得10
18秒前
CodeCraft应助含蓄的小鸽子采纳,获得10
19秒前
轻松山柏完成签到,获得积分10
20秒前
张涛完成签到,获得积分10
21秒前
22秒前
xzy998应助科研通管家采纳,获得10
22秒前
xzy998应助科研通管家采纳,获得10
22秒前
正摩六堂完成签到,获得积分10
22秒前
CipherSage应助科研通管家采纳,获得10
22秒前
天天快乐应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
研友_VZG7GZ应助科研通管家采纳,获得10
22秒前
xzy998应助科研通管家采纳,获得10
22秒前
xzy998应助科研通管家采纳,获得10
22秒前
酷波er应助科研通管家采纳,获得10
22秒前
Lucas应助科研通管家采纳,获得10
22秒前
xzy998应助科研通管家采纳,获得10
22秒前
传奇3应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
23秒前
Yii完成签到,获得积分10
23秒前
高兴的彩虹完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4899245
求助须知:如何正确求助?哪些是违规求助? 4179637
关于积分的说明 12975373
捐赠科研通 3943651
什么是DOI,文献DOI怎么找? 2163478
邀请新用户注册赠送积分活动 1181737
关于科研通互助平台的介绍 1087447