基因
免疫系统
核糖核酸
生物
癌症
DNA测序
计算生物学
肿瘤科
基因表达
癌症研究
内科学
医学
免疫学
遗传学
作者
Yiyan Zhai,Jingyuan Zhang,Zhihong Huang,Rui Shi,Fengying Guo,Fanqin Zhang,Meilin Chen,Yifei Gao,Xiaoyu Tao,Zhengsen Jin,Siyu Guo,Yifan Lin,Peizhi Ye,Jiarui Wu
标识
DOI:10.1016/j.compbiomed.2023.107239
摘要
Early diagnosis and prognostic predication of gastric cancer (GC) pose significant challenges in current clinical practice of GC treatments. Therefore, our aim was to explore relevant gene signatures that can predict the prognosis of GC patients. Here, we established a single-cell transcriptional atlas of GC, focusing on the expression of T-cell-related genes for cell-cell communication analysis, trajectory analysis, and transcription factor regulatory network analysis. Additionally, we conducted validation and prediction of immune-related prognostic gene signatures in GC patients using TCGA and GEO data. Based on these prognostic gene signatures, we predicted the immune infiltration status of GC patients by grouping the patient samples into high or low-risk groups. Based on 10 tumor samples and corresponding normal samples from GC patients, we selected 18,416 cells for subsequent analysis using single-cell sequencing. From these, we identified 3,284 T-cells and obtained 641 differentially expressed genes related to T-cells from 5 different T-cell subtypes. By integrating bulk RNA sequencing data, we identified prognostic signatures associated with T-cells. Stratifying patients based on these prognostic signatures into high-risk or low-risk groups allowed us to effectively predict their survival rates and the immunoinfiltration status of the tumor microenvironment. This study explored prognostic gene signatures associated with T-cells in GC patients, providing insights into predicting patients' survival rates and immunoinfiltration levels.
科研通智能强力驱动
Strongly Powered by AbleSci AI