Single-cell RNA sequencing integrated with bulk RNA sequencing analysis reveals diagnostic and prognostic signatures and immunoinfiltration in gastric cancer

基因 免疫系统 核糖核酸 生物 癌症 DNA测序 计算生物学 肿瘤科 基因表达 癌症研究 内科学 医学 免疫学 遗传学
作者
Yiyan Zhai,Jingyuan Zhang,Zhihong Huang,Rui Shi,Fengying Guo,Fanqin Zhang,Meilin Chen,Yifei Gao,Xiaoyu Tao,Zhengsen Jin,Siyu Guo,Yifan Lin,Peizhi Ye,Jiarui Wu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:163: 107239-107239 被引量:16
标识
DOI:10.1016/j.compbiomed.2023.107239
摘要

Early diagnosis and prognostic predication of gastric cancer (GC) pose significant challenges in current clinical practice of GC treatments. Therefore, our aim was to explore relevant gene signatures that can predict the prognosis of GC patients. Here, we established a single-cell transcriptional atlas of GC, focusing on the expression of T-cell-related genes for cell-cell communication analysis, trajectory analysis, and transcription factor regulatory network analysis. Additionally, we conducted validation and prediction of immune-related prognostic gene signatures in GC patients using TCGA and GEO data. Based on these prognostic gene signatures, we predicted the immune infiltration status of GC patients by grouping the patient samples into high or low-risk groups. Based on 10 tumor samples and corresponding normal samples from GC patients, we selected 18,416 cells for subsequent analysis using single-cell sequencing. From these, we identified 3,284 T-cells and obtained 641 differentially expressed genes related to T-cells from 5 different T-cell subtypes. By integrating bulk RNA sequencing data, we identified prognostic signatures associated with T-cells. Stratifying patients based on these prognostic signatures into high-risk or low-risk groups allowed us to effectively predict their survival rates and the immunoinfiltration status of the tumor microenvironment. This study explored prognostic gene signatures associated with T-cells in GC patients, providing insights into predicting patients' survival rates and immunoinfiltration levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
安详的自中完成签到,获得积分10
刚刚
TOP完成签到 ,获得积分10
刚刚
1秒前
kl小子发布了新的文献求助10
3秒前
3秒前
5秒前
Itsccy发布了新的文献求助10
6秒前
6秒前
wanganjing发布了新的文献求助10
9秒前
10秒前
卷筒洗衣机完成签到,获得积分10
10秒前
11秒前
meng应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
Hanoi347应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
12秒前
sevenhill应助科研通管家采纳,获得10
12秒前
12秒前
赘婿应助科研通管家采纳,获得30
12秒前
妩媚的海应助科研通管家采纳,获得10
12秒前
李爱国应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
sevenhill应助科研通管家采纳,获得10
12秒前
sevenhill应助科研通管家采纳,获得10
12秒前
13秒前
orixero应助科研通管家采纳,获得10
13秒前
VDC应助科研通管家采纳,获得30
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
Hanoi347应助科研通管家采纳,获得10
13秒前
sevenhill应助科研通管家采纳,获得10
13秒前
spc68应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得30
13秒前
13秒前
VDC应助科研通管家采纳,获得30
13秒前
VDC应助科研通管家采纳,获得30
13秒前
小青椒应助科研通管家采纳,获得40
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
13秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5500984
求助须知:如何正确求助?哪些是违规求助? 4597393
关于积分的说明 14458827
捐赠科研通 4530714
什么是DOI,文献DOI怎么找? 2482919
邀请新用户注册赠送积分活动 1466601
关于科研通互助平台的介绍 1439291