材料科学
多模光纤
纳米技术
信号(编程语言)
激光器
光电子学
光纤
光学
物理
程序设计语言
计算机科学
作者
Yuanchao Liu,Jie Pan,Guobin Zhang,Binbin Zhou,Zebiao Li,Pikting Cheung,Weiliang Wang,Yuying Zhu,Siyi Xiao,Lianbo Guo,Condon Lau
标识
DOI:10.1021/acsami.3c02552
摘要
Ultrasensitive sensing to trace atomic and molecular analytes has gained interest for its intimate relation to industrial sectors and human lives. One of the keys to ultrasensitive sensing for many analytical techniques lies in enriching trace analytes onto well-designed substrates. However, the coffee ring effect, nonuniform distribution of analytes onto substrates, in the droplet drying process hinders the ultrasensitive and stable sensing onto the substrates. Here, we propose a substrate-free strategy to suppress the coffee ring effect, enrich analytes, and self-assemble a signal-amplifying (SA) platform for multimode laser sensing. The strategy involves acoustically levitating and drying a droplet, mixed with analytes and core-shell Au@SiO2 nanoparticles, to self-assemble an SA platform. The SA platform with a plasmonic nanostructure can dramatically enrich analytes, enabling enormous spectroscopic signal amplification. Specifically, the SA platform can promote atomic detection (cadmium and chromium) to the 10-3 mg/L level by nanoparticle-enhanced laser-induced breakdown spectroscopy and can promote molecule detection (rhodamine 6G) to the 10-11 mol/L level by surface-enhanced Raman scattering. All in all, the SA platform, self-assembled by acoustic levitation, can intrinsically suppress the coffee ring effect and enrich trace analytes, enabling ultrasensitive multimode laser sensing.
科研通智能强力驱动
Strongly Powered by AbleSci AI