Peritumoral Radiomics Strategy Based on Ensemble Learning for the Prediction of Gleason Grade Group of Prostate Cancer

无线电技术 医学 接收机工作特性 有效扩散系数 前列腺癌 置信区间 曲线下面积 曲线下面积 核医学 放射科 癌症 磁共振成像 内科学 药代动力学
作者
Yang Qiu,Yunfan Liu,Xin Shu,Xiao‐Feng Qiao,Guang-Yong Ai,Xiaojing He
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30: S1-S13 被引量:7
标识
DOI:10.1016/j.acra.2023.06.011
摘要

To develop and evaluate a peritumoral radiomic-based machine learning model to differentiate low-Gleason grade group (L-GGG) and high-GGG (H-GGG) prostate lesions.In this retrospective study, a total of 175 patients with prostate cancer (PCa) confirmed by puncture biopsy were recruited and included 59 patients with L-GGG and 116 patients with H-GGG. The original PCa regions of interest (ROIs) were delineated on T2-weighted (T2WI), diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC) maps, and then centra-tumoral and peritumoral ROIs were defined. Features were meticulously extracted from each ROI to establish radiomics models, employing distinct sequence datasets. Peritumoral radiomics models were specifically developed for both the peripheral zone (PZ) and transitional zone (TZ), utilizing dedicated PZ and TZ datasets, respectively. The performances of the models were evaluated by using the receiver operating characteristic (ROC) curve and precision-recall curve.The classification model with combined peritumoral features based on T2 + DWI + ADC sequence dataset demonstrated superior performance compared to the original tumor and centra-tumoral classification models. It achieved an area under the ROC curve (AUC) of 0.850 [95% confidence interval, 0.849, 0.860] and an average accuracy of 0.950. The combined peritumoral model outperformed the regional peritumoral models with AUC of 0.85 versus 0.75 for PZ lesions and 0.88 versus 0.69 for TZ lesions, respectively. The peritumoral classification models exhibit greater efficacy in predicting PZ lesions as opposed to TZ lesions.The peritumoral radiomics features showed excellent performance in predicting GGG in PCa patients and might be a valuable addition to the non-invasive assessment of PCa aggressiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丁小丁完成签到,获得积分10
刚刚
lzh353512377完成签到,获得积分10
1秒前
龚晓博完成签到,获得积分10
1秒前
逍遥完成签到,获得积分10
1秒前
乐天发布了新的文献求助10
2秒前
2秒前
3秒前
Steven完成签到,获得积分10
4秒前
4秒前
无风海发布了新的文献求助10
4秒前
王佳亮发布了新的文献求助10
7秒前
bulinggu完成签到,获得积分10
7秒前
阿连完成签到,获得积分10
7秒前
颜琪完成签到,获得积分10
9秒前
豆豆发布了新的文献求助10
9秒前
小海贼发布了新的文献求助10
10秒前
传奇3应助无Wen3采纳,获得10
10秒前
ssj发布了新的文献求助10
11秒前
11秒前
苏格拉底的嘲笑完成签到,获得积分10
11秒前
11秒前
12秒前
桐桐应助Emotion采纳,获得10
12秒前
乐正熠彤完成签到,获得积分10
12秒前
lxr完成签到,获得积分10
12秒前
麦子发布了新的文献求助10
14秒前
无风海完成签到 ,获得积分10
15秒前
鸣笛应助snai1采纳,获得20
15秒前
funny完成签到,获得积分10
16秒前
tp040900发布了新的文献求助10
16秒前
fleefly发布了新的文献求助30
16秒前
MchemG应助乐正熠彤采纳,获得20
17秒前
17秒前
18秒前
MchemG应助Rain采纳,获得10
20秒前
20秒前
21秒前
万能图书馆应助yyh采纳,获得30
22秒前
魔幻的心情完成签到,获得积分10
23秒前
达鸟啊发布了新的文献求助10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992840
求助须知:如何正确求助?哪些是违规求助? 3533621
关于积分的说明 11263330
捐赠科研通 3273416
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809619