Peritumoral Radiomics Strategy Based on Ensemble Learning for the Prediction of Gleason Grade Group of Prostate Cancer

无线电技术 医学 接收机工作特性 有效扩散系数 前列腺癌 置信区间 曲线下面积 曲线下面积 核医学 放射科 癌症 磁共振成像 内科学 药代动力学
作者
Yang Qiu,Yunfan Liu,Xin Shu,Xiao‐Feng Qiao,Guang-Yong Ai,Xiaojing He
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30: S1-S13 被引量:9
标识
DOI:10.1016/j.acra.2023.06.011
摘要

To develop and evaluate a peritumoral radiomic-based machine learning model to differentiate low-Gleason grade group (L-GGG) and high-GGG (H-GGG) prostate lesions.In this retrospective study, a total of 175 patients with prostate cancer (PCa) confirmed by puncture biopsy were recruited and included 59 patients with L-GGG and 116 patients with H-GGG. The original PCa regions of interest (ROIs) were delineated on T2-weighted (T2WI), diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC) maps, and then centra-tumoral and peritumoral ROIs were defined. Features were meticulously extracted from each ROI to establish radiomics models, employing distinct sequence datasets. Peritumoral radiomics models were specifically developed for both the peripheral zone (PZ) and transitional zone (TZ), utilizing dedicated PZ and TZ datasets, respectively. The performances of the models were evaluated by using the receiver operating characteristic (ROC) curve and precision-recall curve.The classification model with combined peritumoral features based on T2 + DWI + ADC sequence dataset demonstrated superior performance compared to the original tumor and centra-tumoral classification models. It achieved an area under the ROC curve (AUC) of 0.850 [95% confidence interval, 0.849, 0.860] and an average accuracy of 0.950. The combined peritumoral model outperformed the regional peritumoral models with AUC of 0.85 versus 0.75 for PZ lesions and 0.88 versus 0.69 for TZ lesions, respectively. The peritumoral classification models exhibit greater efficacy in predicting PZ lesions as opposed to TZ lesions.The peritumoral radiomics features showed excellent performance in predicting GGG in PCa patients and might be a valuable addition to the non-invasive assessment of PCa aggressiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
老迟到的幼枫完成签到,获得积分10
刚刚
shinble完成签到,获得积分10
1秒前
外向念之完成签到 ,获得积分10
1秒前
楠楠完成签到 ,获得积分10
1秒前
铁瓜李完成签到 ,获得积分10
2秒前
耶耶耶发布了新的文献求助10
2秒前
milalala留下了新的社区评论
2秒前
3秒前
年少轻狂最情深完成签到,获得积分10
4秒前
迷路的糜完成签到,获得积分10
4秒前
4秒前
xiaoxue发布了新的文献求助10
5秒前
所所应助王艳霞采纳,获得10
6秒前
yxy完成签到,获得积分10
6秒前
xuxuxuuxuxux完成签到,获得积分10
6秒前
7秒前
123完成签到 ,获得积分10
7秒前
所所应助姚姚采纳,获得10
8秒前
Csm完成签到,获得积分10
8秒前
墨然然完成签到 ,获得积分10
9秒前
9秒前
狠毒的小龙虾完成签到,获得积分10
9秒前
CKK完成签到,获得积分10
10秒前
lkxpsy发布了新的文献求助10
10秒前
战战完成签到,获得积分10
10秒前
yiyi完成签到,获得积分20
10秒前
11秒前
现代老鼠完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
orixero应助WZ采纳,获得10
12秒前
贾珂盈完成签到,获得积分10
12秒前
小琼子完成签到,获得积分10
12秒前
多情遥完成签到,获得积分10
12秒前
坐忘道发布了新的文献求助10
12秒前
Jessica完成签到,获得积分10
13秒前
阿达完成签到,获得积分10
13秒前
13秒前
还单身的雅琴完成签到,获得积分10
13秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5235025
求助须知:如何正确求助?哪些是违规求助? 4403456
关于积分的说明 13702074
捐赠科研通 4270819
什么是DOI,文献DOI怎么找? 2343784
邀请新用户注册赠送积分活动 1340961
关于科研通互助平台的介绍 1298338