Peritumoral Radiomics Strategy Based on Ensemble Learning for the Prediction of Gleason Grade Group of Prostate Cancer

无线电技术 医学 接收机工作特性 有效扩散系数 前列腺癌 置信区间 曲线下面积 曲线下面积 核医学 放射科 癌症 磁共振成像 内科学 药代动力学
作者
Yang Qiu,Yunfan Liu,Xin Shu,Xiao‐Feng Qiao,Guang-Yong Ai,Xiaojing He
出处
期刊:Academic Radiology [Elsevier]
卷期号:30: S1-S13 被引量:12
标识
DOI:10.1016/j.acra.2023.06.011
摘要

To develop and evaluate a peritumoral radiomic-based machine learning model to differentiate low-Gleason grade group (L-GGG) and high-GGG (H-GGG) prostate lesions.In this retrospective study, a total of 175 patients with prostate cancer (PCa) confirmed by puncture biopsy were recruited and included 59 patients with L-GGG and 116 patients with H-GGG. The original PCa regions of interest (ROIs) were delineated on T2-weighted (T2WI), diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC) maps, and then centra-tumoral and peritumoral ROIs were defined. Features were meticulously extracted from each ROI to establish radiomics models, employing distinct sequence datasets. Peritumoral radiomics models were specifically developed for both the peripheral zone (PZ) and transitional zone (TZ), utilizing dedicated PZ and TZ datasets, respectively. The performances of the models were evaluated by using the receiver operating characteristic (ROC) curve and precision-recall curve.The classification model with combined peritumoral features based on T2 + DWI + ADC sequence dataset demonstrated superior performance compared to the original tumor and centra-tumoral classification models. It achieved an area under the ROC curve (AUC) of 0.850 [95% confidence interval, 0.849, 0.860] and an average accuracy of 0.950. The combined peritumoral model outperformed the regional peritumoral models with AUC of 0.85 versus 0.75 for PZ lesions and 0.88 versus 0.69 for TZ lesions, respectively. The peritumoral classification models exhibit greater efficacy in predicting PZ lesions as opposed to TZ lesions.The peritumoral radiomics features showed excellent performance in predicting GGG in PCa patients and might be a valuable addition to the non-invasive assessment of PCa aggressiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xiongyh10发布了新的文献求助10
刚刚
zk关闭了zk文献求助
1秒前
1秒前
BJL发布了新的文献求助10
1秒前
1秒前
LF完成签到 ,获得积分10
1秒前
coco发布了新的文献求助10
1秒前
2秒前
2秒前
传奇3应助科研工作者采纳,获得10
2秒前
可爱的函函应助Yixin_Niu采纳,获得10
3秒前
3秒前
3秒前
yellowflash发布了新的文献求助10
3秒前
笑对人生关注了科研通微信公众号
3秒前
Akim应助奔跑的棉花采纳,获得10
4秒前
苗条的语海完成签到,获得积分10
4秒前
4秒前
搜集达人应助欣慰的妙菱采纳,获得30
4秒前
科研通AI2S应助Eina采纳,获得10
4秒前
砡君应助xiaoyan采纳,获得10
4秒前
yld发布了新的文献求助10
4秒前
搜集达人应助专注的问筠采纳,获得10
4秒前
4秒前
maytang发布了新的文献求助30
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
ruqinmq完成签到,获得积分10
5秒前
锕系第八元素完成签到,获得积分10
5秒前
无花果应助飞槐采纳,获得10
5秒前
WanRan发布了新的文献求助10
5秒前
Bonobonoya发布了新的文献求助10
6秒前
Jasper应助tangyuan采纳,获得10
6秒前
bxsg完成签到 ,获得积分20
6秒前
6秒前
Lucas应助叶子采纳,获得10
6秒前
guagua发布了新的文献求助10
6秒前
fiu~发布了新的文献求助10
7秒前
Jasper应助wyw123采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894