已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Peritumoral Radiomics Strategy Based on Ensemble Learning for the Prediction of Gleason Grade Group of Prostate Cancer

无线电技术 医学 接收机工作特性 有效扩散系数 前列腺癌 置信区间 曲线下面积 曲线下面积 核医学 放射科 癌症 磁共振成像 内科学 药代动力学
作者
Yang Qiu,Yunfan Liu,Xin Shu,Xiao‐Feng Qiao,Guang-Yong Ai,Xiaojing He
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30: S1-S13 被引量:6
标识
DOI:10.1016/j.acra.2023.06.011
摘要

To develop and evaluate a peritumoral radiomic-based machine learning model to differentiate low-Gleason grade group (L-GGG) and high-GGG (H-GGG) prostate lesions.In this retrospective study, a total of 175 patients with prostate cancer (PCa) confirmed by puncture biopsy were recruited and included 59 patients with L-GGG and 116 patients with H-GGG. The original PCa regions of interest (ROIs) were delineated on T2-weighted (T2WI), diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC) maps, and then centra-tumoral and peritumoral ROIs were defined. Features were meticulously extracted from each ROI to establish radiomics models, employing distinct sequence datasets. Peritumoral radiomics models were specifically developed for both the peripheral zone (PZ) and transitional zone (TZ), utilizing dedicated PZ and TZ datasets, respectively. The performances of the models were evaluated by using the receiver operating characteristic (ROC) curve and precision-recall curve.The classification model with combined peritumoral features based on T2 + DWI + ADC sequence dataset demonstrated superior performance compared to the original tumor and centra-tumoral classification models. It achieved an area under the ROC curve (AUC) of 0.850 [95% confidence interval, 0.849, 0.860] and an average accuracy of 0.950. The combined peritumoral model outperformed the regional peritumoral models with AUC of 0.85 versus 0.75 for PZ lesions and 0.88 versus 0.69 for TZ lesions, respectively. The peritumoral classification models exhibit greater efficacy in predicting PZ lesions as opposed to TZ lesions.The peritumoral radiomics features showed excellent performance in predicting GGG in PCa patients and might be a valuable addition to the non-invasive assessment of PCa aggressiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南瓜完成签到,获得积分10
2秒前
NexusExplorer应助优美的山晴采纳,获得10
2秒前
科研通AI5应助乐观的非笑采纳,获得10
3秒前
4秒前
4秒前
三井库里发布了新的文献求助10
5秒前
11发布了新的文献求助10
5秒前
7秒前
zzzzzzzzzzzz完成签到,获得积分10
8秒前
0000完成签到 ,获得积分10
9秒前
Gxy完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
深情安青应助迷路的水彤采纳,获得10
11秒前
13秒前
活泼凌青完成签到,获得积分10
13秒前
Bystander完成签到 ,获得积分10
14秒前
FashionBoy应助z1采纳,获得10
15秒前
17秒前
11完成签到,获得积分10
17秒前
iNk应助刘璇1采纳,获得20
17秒前
独特冰海完成签到,获得积分10
19秒前
19秒前
科研通AI5应助科研通管家采纳,获得30
19秒前
PKUBruce应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
打打应助科研通管家采纳,获得10
19秒前
研友_VZG7GZ应助科研通管家采纳,获得10
20秒前
20秒前
打打应助科研通管家采纳,获得10
20秒前
CipherSage应助科研通管家采纳,获得10
20秒前
NJD应助科研通管家采纳,获得10
20秒前
Hello应助科研通管家采纳,获得10
20秒前
子车茗应助科研通管家采纳,获得30
20秒前
20秒前
机智紫菜关注了科研通微信公众号
21秒前
量子星尘发布了新的文献求助10
23秒前
疑问师发布了新的文献求助10
23秒前
勇往直前发布了新的文献求助10
26秒前
29秒前
丘比特应助kay采纳,获得10
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666170
求助须知:如何正确求助?哪些是违规求助? 3225205
关于积分的说明 9761933
捐赠科研通 2935194
什么是DOI,文献DOI怎么找? 1607459
邀请新用户注册赠送积分活动 759203
科研通“疑难数据库(出版商)”最低求助积分说明 735153