梨
木质素
生物
转录组
细胞壁
MYB公司
基因
肉体
基因表达
转录因子
细胞
细胞生物学
植物
生物化学
食品科学
作者
Yansong Zhu,Yicheng Wang,Huiyan Jiang,Wenjun Liu,Shuhui Zhang,Xukai Hou,Susu Zhang,Nan Wang,Rui Zhang,Zongying Zhang,Xuesen Chen
出处
期刊:Plant Journal
[Wiley]
日期:2023-07-27
卷期号:116 (1): 217-233
被引量:8
摘要
SUMMARY Pear fruit stone cells have thick walls and are formed by the secondary deposition of lignin in the primary cell wall of thin‐walled cells. Their content and size seriously affect fruit characteristics related to edibility. To reveal the regulatory mechanism underlying stone cell formation during pear fruit development and to identify hub genes, we examined the stone cell and lignin contents of 30 ‘Shannongsu’ pear flesh samples and analyzed the transcriptomes of 15 pear flesh samples collected at five developmental stages. On the basis of the RNA‐seq data, 35 874 differentially expressed genes were detected. Additionally, two stone cell‐related modules were identified according to a WGCNA. A total of 42 lignin‐related structural genes were subsequently obtained. Furthermore, nine hub structural genes were identified in the lignin regulatory network. We also identified PbMYB61 and PbMYB308 as candidate transcriptional regulators of stone cell formation after analyzing co‐expression networks and phylogenetic relationships. Finally, we experimentally validated and characterized the candidate transcription factors and revealed that PbMYB61 regulates stone cell lignin formation by binding to the AC element in the PbLAC1 promoter to upregulate expression. However, PbMYB308 negatively regulates stone cell lignin synthesis by binding to PbMYB61 to form a dimer that cannot activate PbLAC1 expression. In this study, we explored the lignin synthesis‐related functions of MYB family members. The results presented herein are useful for elucidating the complex mechanisms underlying lignin biosynthesis during pear fruit stone cell development.
科研通智能强力驱动
Strongly Powered by AbleSci AI