Random Polynomial Neural Networks: Analysis and Design

过度拟合 计算机科学 多项式的 人工神经网络 粒子群优化 非线性系统 机器学习 人工智能 数学优化 数学 量子力学 物理 数学分析
作者
Wei Huang,Yueyue Xiao,Sung‐Kwun Oh,Witold Pedrycz,Liehuang Zhu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:1
标识
DOI:10.1109/tnnls.2023.3288577
摘要

In this article, we propose the concept of random polynomial neural networks (RPNNs) realized based on the architecture of polynomial neural networks (PNNs) with random polynomial neurons (RPNs). RPNs exhibit generalized polynomial neurons (PNs) based on random forest (RF) architecture. In the design of RPNs, the target variables are no longer directly used in conventional decision trees, and the polynomial of these target variables is exploited here to determine the average prediction. Unlike the conventional performance index used in the selection of PNs, the correlation coefficient is adopted here to select the RPNs of each layer. When compared with the conventional PNs used in PNNs, the proposed RPNs exhibit the following advantages: first, RPNs are insensitive to outliers; second, RPNs can obtain the importance of each input variable after training; third, RPNs can alleviate the overfitting problem with the use of an RF structure. The overall nonlinearity of a complex system is captured by means of PNNs. Moreover, particle swarm optimization (PSO) is exploited to optimize the parameters when constructing RPNNs. The RPNNs take advantage of both RF and PNNs: it exhibits high accuracy based on ensemble learning used in the RF and is beneficial to describe high-order nonlinear relations between input and output variables stemming from PNNs. Experimental results based on a series of well-known modeling benchmarks illustrate that the proposed RPNNs outperform other state-of-the-art models reported in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李学文啊发布了新的文献求助10
刚刚
细腻天蓝完成签到 ,获得积分10
1秒前
1秒前
1秒前
脑洞疼应助可爱佳采纳,获得10
2秒前
清清褚褚完成签到,获得积分10
2秒前
科研探索者完成签到,获得积分10
2秒前
大个应助Kenny采纳,获得10
2秒前
3秒前
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
3秒前
香蕉觅云应助李李李采纳,获得10
3秒前
hzxy_lyt应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
feilu应助科研通管家采纳,获得10
4秒前
4秒前
1111发布了新的文献求助10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得30
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
5秒前
小方发布了新的文献求助10
5秒前
喵呜发布了新的文献求助10
5秒前
sxk795发布了新的文献求助10
5秒前
研友_Lmg01Z发布了新的文献求助30
5秒前
6秒前
6秒前
zrh完成签到,获得积分10
6秒前
8秒前
上官若男应助李学文啊采纳,获得10
8秒前
sxy0604发布了新的文献求助10
9秒前
9秒前
9秒前
zhangzhuopu发布了新的文献求助10
9秒前
大模型应助神勇的天问采纳,获得10
10秒前
10秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3296188
求助须知:如何正确求助?哪些是违规求助? 2932140
关于积分的说明 8455045
捐赠科研通 2604586
什么是DOI,文献DOI怎么找? 1421872
科研通“疑难数据库(出版商)”最低求助积分说明 661240
邀请新用户注册赠送积分活动 644182