已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

PI-LSTM: Physics-informed long short-term memory network for structural response modeling

深度学习 人工智能 期限(时间) 非线性系统 计算机科学 人工神经网络 航程(航空) 网络模型 短时记忆 机器学习 循环神经网络 工程类 物理 量子力学 航空航天工程
作者
Fangyu Liu,Junlin Li,Linbing Wang
出处
期刊:Engineering Structures [Elsevier BV]
卷期号:292: 116500-116500 被引量:42
标识
DOI:10.1016/j.engstruct.2023.116500
摘要

Deep learning models have achieved remarkable accuracy for structural response modeling. However, these models heavily depend on having a sufficient amount of training data, which can be challenging and time-consuming to collect. Moreover, data-driven models sometimes struggle to adhere to physics constraints. Therefore, in this study, a physics-informed long short-term memory (PI-LSTM) network was applied to structural response modeling by incorporating physics constraints into deep learning. The physics constraints were modified to accommodate the characteristics of both linear and nonlinear cases. The PI-LSTM network, inspired by and compared with existing physics-informed deep learning models (PhyCNN and PhyLSTM), was validated using the numerical simulation results of the single-degree-of-freedom (SDOF) system and the experimental results of the six-story building. Additionally, the PI-LSTM network underwent thorough investigation and validation across the four cases of the SDOF system and numerical simulation results of the six-story building with the comparison of the regular LSTM. The results indicate that the PI-LSTM network outperformed the regular LSTM models in terms of accuracy. Furthermore, the PI-LSTM network exhibited a more concentrated and higher accuracy range when analyzing the results of both the SDOF system and the six-story building. These findings demonstrate that the PI-LSTM network presents a reliable and efficient approach for structural response modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
金蛋蛋完成签到 ,获得积分10
2秒前
7秒前
米米发布了新的文献求助10
7秒前
小河向东流给小河向东流的求助进行了留言
10秒前
踏实嚣完成签到 ,获得积分10
13秒前
nenoaowu发布了新的文献求助10
13秒前
13秒前
Orange应助nenoaowu采纳,获得10
16秒前
庚朝年完成签到 ,获得积分10
17秒前
18秒前
18秒前
唐唐完成签到 ,获得积分10
19秒前
22秒前
仙人发布了新的文献求助10
22秒前
22秒前
yyds发布了新的文献求助10
23秒前
SDNUDRUG完成签到,获得积分10
27秒前
wcy完成签到 ,获得积分10
27秒前
27秒前
Rainbow完成签到 ,获得积分10
28秒前
871624521发布了新的文献求助10
29秒前
康子谦关注了科研通微信公众号
30秒前
思源应助乔谷雪采纳,获得10
30秒前
科研打工狗完成签到,获得积分10
31秒前
huangwensou发布了新的文献求助10
31秒前
枝头树上的布谷鸟完成签到 ,获得积分10
33秒前
33秒前
Orange应助yyds采纳,获得10
35秒前
huanger完成签到,获得积分10
35秒前
cc完成签到 ,获得积分10
38秒前
39秒前
43秒前
46秒前
思源应助仙人采纳,获得30
46秒前
朴素寻冬完成签到,获得积分10
49秒前
杰桑的西地那非完成签到,获得积分10
52秒前
康子谦发布了新的文献求助10
53秒前
我是老大应助科研通管家采纳,获得10
53秒前
外向芹菜完成签到 ,获得积分10
53秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959964
求助须知:如何正确求助?哪些是违规求助? 3506202
关于积分的说明 11128397
捐赠科研通 3238196
什么是DOI,文献DOI怎么找? 1789577
邀请新用户注册赠送积分活动 871810
科研通“疑难数据库(出版商)”最低求助积分说明 803042