已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

PI-LSTM: Physics-informed long short-term memory network for structural response modeling

深度学习 人工智能 期限(时间) 非线性系统 计算机科学 人工神经网络 航程(航空) 网络模型 短时记忆 机器学习 循环神经网络 工程类 物理 量子力学 航空航天工程
作者
Fangyu Liu,Junlin Li,Linbing Wang
出处
期刊:Engineering Structures [Elsevier]
卷期号:292: 116500-116500 被引量:74
标识
DOI:10.1016/j.engstruct.2023.116500
摘要

Deep learning models have achieved remarkable accuracy for structural response modeling. However, these models heavily depend on having a sufficient amount of training data, which can be challenging and time-consuming to collect. Moreover, data-driven models sometimes struggle to adhere to physics constraints. Therefore, in this study, a physics-informed long short-term memory (PI-LSTM) network was applied to structural response modeling by incorporating physics constraints into deep learning. The physics constraints were modified to accommodate the characteristics of both linear and nonlinear cases. The PI-LSTM network, inspired by and compared with existing physics-informed deep learning models (PhyCNN and PhyLSTM), was validated using the numerical simulation results of the single-degree-of-freedom (SDOF) system and the experimental results of the six-story building. Additionally, the PI-LSTM network underwent thorough investigation and validation across the four cases of the SDOF system and numerical simulation results of the six-story building with the comparison of the regular LSTM. The results indicate that the PI-LSTM network outperformed the regular LSTM models in terms of accuracy. Furthermore, the PI-LSTM network exhibited a more concentrated and higher accuracy range when analyzing the results of both the SDOF system and the six-story building. These findings demonstrate that the PI-LSTM network presents a reliable and efficient approach for structural response modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
tomorrow完成签到,获得积分10
2秒前
obsession完成签到 ,获得积分10
2秒前
2秒前
雅典的宠儿完成签到 ,获得积分10
2秒前
蕊蕊完成签到 ,获得积分10
3秒前
lin发布了新的文献求助10
4秒前
随机科研完成签到,获得积分10
4秒前
含着朵白云完成签到 ,获得积分0
5秒前
linsen发布了新的文献求助10
6秒前
6秒前
tomorrow发布了新的文献求助10
6秒前
北觅完成签到 ,获得积分10
8秒前
FairyLeaf完成签到 ,获得积分10
8秒前
9秒前
15秒前
hulahula完成签到 ,获得积分10
17秒前
大帅比完成签到 ,获得积分10
17秒前
Jasper应助科研通管家采纳,获得10
18秒前
隐形曼青应助科研通管家采纳,获得10
18秒前
shhoing应助科研通管家采纳,获得10
18秒前
BowieHuang应助科研通管家采纳,获得10
18秒前
赘婿应助科研通管家采纳,获得10
18秒前
nPgA2o应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
顺风顺水顺财神完成签到 ,获得积分10
21秒前
呼啦呼啦完成签到 ,获得积分10
23秒前
Emma发布了新的文献求助10
26秒前
颜卿完成签到 ,获得积分10
26秒前
28秒前
orbitvox完成签到,获得积分10
29秒前
30秒前
marco完成签到 ,获得积分10
31秒前
木叶发布了新的文献求助10
31秒前
小二郎应助下一周采纳,获得10
33秒前
33秒前
复杂的夜香完成签到 ,获得积分10
34秒前
万能图书馆应助qwe123采纳,获得10
35秒前
烟花应助余成风采纳,获得10
36秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542978
求助须知:如何正确求助?哪些是违规求助? 4629095
关于积分的说明 14610815
捐赠科研通 4570377
什么是DOI,文献DOI怎么找? 2505716
邀请新用户注册赠送积分活动 1483039
关于科研通互助平台的介绍 1454361