Species distribution models of Brant's oak (Quercus brantii Lindl.): The impact of spatial database on predicting the impacts of climate change

生态区 环境科学 气候变化 物种分布 空间分布 气候学 航程(航空) 降水 地理 自然地理学 栖息地 生态学 气象学 遥感 生物 材料科学 地质学 复合材料
作者
Hengameh Mirhashemi,Mehdi Heydari,Kourosh Ahmadi,Omid Karami,Ali Kavgacı,Tetsuya Matsui,Brandon Heung
出处
期刊:Ecological Engineering [Elsevier]
卷期号:194: 107038-107038 被引量:13
标识
DOI:10.1016/j.ecoleng.2023.107038
摘要

Investigating the correlation between environmental variables and species distribution should be performed using data acquired from appropriate spatial scales to meet adaptive management requirements in a changing environment. This research aimed to model the influence of climate change on the spatial distribution of Brant’s oak (Quercus brantii Lindl.) via presence data acquired from local (Ilam province, western Iran), regional (Zagros ecoregion), and global (whole distribution extent of Brant’s oak) extents. To project the potential habitat of Brant's oak, general circulation models (CCSM4, HADGEM2-ES, BCC-CSM1–1 and GISS-E2-R) under the 2.6 and 8.5 representative concentration pathways (RCP) for 2050 and 2070 were used. To model the distribution of Brant’s oak, artificial neural network (ANN), random forest (RF), generalized linear model (GLM), and maximum entropy (MaxEnt) were compared. To validate the models, random-holdback cross-validation, whereby 80% of the data was randomly selected to calibrate the model and the remaining 20% was used to validate the models, was carried out. The results revealed that enhancing the modeling extent increased the accuracy of the model; hence, a model trained using the global dataset performed better than local and regional datasets. In all three geographical extents, RF and MaxEnt had the best performance in modeling the spatial distribution range of Brant’s oak. The main predictors of Brant’s oak distribution were different in local, regional, and global models. The mean temperature of driest quarter (bio9), at the local extent; precipitation of wettest month (bio13), at the regional extent; and temperature annual range (bio7), at the global extent were the most important climatic variables. The findings also indicated that the potential habitat of Brant’s oak will decline in the future under climate change scenarios (i.e., RCP 2.6 and RCP 8.5) and across all three geographical extents compared to the current habitat. Using the findings of this study, it is possible to identify the suitable habitats of Brant's oak forests with more certainty and take measures to manage and protect them.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健壮诗桃发布了新的文献求助10
1秒前
华仔应助平淡忻采纳,获得10
2秒前
知墨发布了新的文献求助10
2秒前
蒋彪发布了新的文献求助30
3秒前
3秒前
4秒前
传奇3应助羊毛毛衣采纳,获得10
4秒前
4秒前
wzq发布了新的文献求助10
4秒前
燕沛槐完成签到 ,获得积分10
5秒前
6秒前
皮皮发布了新的文献求助10
6秒前
6秒前
Yziii应助从这采纳,获得20
6秒前
三三得九发布了新的文献求助10
8秒前
wangdao完成签到,获得积分10
8秒前
万能图书馆应助LMC采纳,获得10
9秒前
9秒前
刘岚天完成签到 ,获得积分10
9秒前
9秒前
Hello应助Senna采纳,获得10
10秒前
tl完成签到,获得积分10
10秒前
10秒前
plq发布了新的文献求助10
12秒前
KeLiang完成签到,获得积分10
13秒前
13秒前
fan完成签到,获得积分10
13秒前
13秒前
雁夜完成签到,获得积分10
14秒前
sen123完成签到 ,获得积分10
14秒前
qiaoshan_Jason完成签到,获得积分10
15秒前
woo完成签到,获得积分10
15秒前
如意的惮发布了新的文献求助10
15秒前
zho发布了新的文献求助10
16秒前
三三得九完成签到,获得积分10
16秒前
羊毛毛衣发布了新的文献求助10
17秒前
17秒前
脑洞疼应助H1采纳,获得10
18秒前
19秒前
谦让盼海完成签到,获得积分10
20秒前
高分求助中
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3127482
求助须知:如何正确求助?哪些是违规求助? 2778315
关于积分的说明 7738877
捐赠科研通 2433618
什么是DOI,文献DOI怎么找? 1292999
科研通“疑难数据库(出版商)”最低求助积分说明 623109
版权声明 600489