杂原子
单线态氧
化学
催化作用
碳纤维
金属有机骨架
光化学
降级(电信)
无机化学
过硫酸盐
氧气
有机化学
材料科学
戒指(化学)
电信
吸附
复合数
计算机科学
复合材料
作者
Jinling Xie,Xiaofang Pan,Chengming Jiang,Li Zhao,Xiaobo Gong,Yong Liu
标识
DOI:10.1016/j.envres.2023.116745
摘要
The activation of persulfate technology using carbon-based materials doped with heteroatoms has been extensively researched for the elimination of refractory pollutants in wastewater. In this study, metal-organic frameworks were utilized as precursors to synthesize P, N dual-doped carbon material (PNC), which was employed to activate peroxymonosulfate (PMS) for the degradation of tetracycline hydrochloride (TCH). The results demonstrated a 90.2% removal efficiency of total organic carbon within 60 min. The significant increase of surface defects on the nitrogen self-doped porous carbon materials anchored with phosphorus promoted the conversion of superoxide radical to singlet oxygen during PMS activation, which was identified as the key active species of PNC/PMS system. Additionally, the enhanced direct electron transfer also facilitated the degradation of TCH. Consequently, TCH was successfully degraded into nontoxic and harmless inorganic small molecules. The findings of this research provide valuable insights into improving the performance of heteroatom-doped carbon materials for pollutant degradation by activating PMS and transforming the non-radical pathway. The results highlight the potential of metal-organic frameworks derived heteroatoms dual-doped porous carbon catalysts for the development of advanced treatment technologies in wastewater treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI