Generation of Synthetic CT from CBCT using Deep Learning Approaches for Head and Neck Cancer Patients

医学 放射治疗 核医学 锥束ct 残余物 成像体模 锥束ct 头颈部 计算机科学 放射科 计算机断层摄影术 算法 外科
作者
Souha Aouadi,SA Yoganathan,Tarraf Torfeh,S. Paloor,Palmira Caparrotti,Rabih Hammoud,Noora Al‐Hammadi
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:9 (5): 055020-055020
标识
DOI:10.1088/2057-1976/acea27
摘要

Purpose.To create a synthetic CT (sCT) from daily CBCT using either deep residual U-Net (DRUnet), or conditional generative adversarial network (cGAN) for adaptive radiotherapy planning (ART).Methods.First fraction CBCT and planning CT (pCT) were collected from 93 Head and Neck patients who underwent external beam radiotherapy. The dataset was divided into training, validation, and test sets of 58, 10 and 25 patients respectively. Three methods were used to generate sCT, 1. Nonlocal means patch based method was modified to include multiscale patches defining the multiscale patch based method (MPBM), 2. An encoder decoder 2D Unet with imbricated deep residual units was implemented, 3. DRUnet was integrated to the generator part of cGAN whereas a convolutional PatchGAN classifier was used as the discriminator. The accuracy of sCT was evaluated geometrically using Mean Absolute Error (MAE). Clinical Volumetric Modulated Arc Therapy (VMAT) plans were copied from pCT to registered CBCT and sCT and dosimetric analysis was performed by comparing Dose Volume Histogram (DVH) parameters of planning target volumes (PTVs) and organs at risk (OARs). Furthermore, 3D Gamma analysis (2%/2mm, global) between the dose on the sCT or CBCT and that on the pCT was performed.Results. The average MAE calculated between pCT and CBCT was 180.82 ± 27.37HU. Overall, all approaches significantly reduced the uncertainties in CBCT. Deep learning approaches outperformed patch-based methods with MAE = 67.88 ± 8.39HU (DRUnet) and MAE = 72.52 ± 8.43HU (cGAN) compared to MAE = 90.69 ± 14.3HU (MPBM). The percentages of DVH metric deviations were below 0.55% for PTVs and 1.17% for OARs using DRUnet. The average Gamma pass rate was 99.45 ± 1.86% for sCT generated using DRUnet.Conclusion.DL approaches outperformed MPBM. Specifically, DRUnet could be used for the generation of sCT with accurate intensities and realistic description of patient anatomy. This could be beneficial for CBCT based ART.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
静默向上发布了新的文献求助10
刚刚
田又又完成签到,获得积分10
刚刚
Hxw完成签到,获得积分10
1秒前
科研丁完成签到,获得积分10
1秒前
大气指甲油完成签到,获得积分10
2秒前
起始密码完成签到,获得积分10
3秒前
bjglp完成签到,获得积分10
3秒前
017发布了新的文献求助10
4秒前
4秒前
吃颗糖吧完成签到,获得积分10
4秒前
4秒前
WXK@945发布了新的文献求助10
4秒前
斯文的道罡完成签到,获得积分10
5秒前
5秒前
彭于晏应助优雅的冰岚采纳,获得10
5秒前
啦啦咔嘞完成签到,获得积分10
5秒前
youwu完成签到,获得积分10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
HEIKU应助科研通管家采纳,获得10
6秒前
HEIKU应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
Atis完成签到,获得积分10
6秒前
6秒前
HEIKU应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
HEIKU应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
HEIKU应助科研通管家采纳,获得10
6秒前
领导范儿应助碧蓝幻香采纳,获得10
7秒前
hjf完成签到,获得积分10
7秒前
7秒前
g7001完成签到,获得积分10
8秒前
卡卡西完成签到,获得积分10
8秒前
香蕉觅云应助vsvsgo采纳,获得10
8秒前
罗博超完成签到,获得积分10
9秒前
songf11完成签到,获得积分10
9秒前
orixero应助WXK@945采纳,获得10
9秒前
jia完成签到 ,获得积分10
10秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3408406
求助须知:如何正确求助?哪些是违规求助? 3012597
关于积分的说明 8854776
捐赠科研通 2699744
什么是DOI,文献DOI怎么找? 1480168
科研通“疑难数据库(出版商)”最低求助积分说明 684209
邀请新用户注册赠送积分活动 678506