材料科学
分解
催化作用
氨
镍
氨生产
无机化学
有机化学
化学
冶金
作者
Kiya Ogasawara,Masayoshi Miyazaki,Kazuki Miyashita,Hitoshi Abe,Y. Niwa,Masato Sasase,Masaaki Kitano,Hideo Hosono
标识
DOI:10.1002/aenm.202301286
摘要
Abstract Nickel is a promising candidate as an alternative to ruthenium for an ammonia decomposition catalyst. However, the performance of Ni‐based catalysts for ammonia decomposition is still not sufficient to achieve a good hydrogen production rate under low‐temperature because the weak nitrogen affinity of Ni reduces the frequency of the ammonia decomposition reaction. Here, it is reported that Ni supported on barium titanium oxynitride (Ni/ h ‐BaTiO 3− x N y ) with a hexagonal structure acts as a highly active and water‐durable catalyst for ammonia decomposition. The operation temperature is reduced by over 140 °C when N 3− ions are substituted onto the O 2− sites of the BaTiO 3 lattice, and the Ni/ h ‐BaTiO 3− x N y catalyst significantly outperforms conventional oxide‐supported Ni catalysts for ammonia decomposition. Furthermore, the activity of Ni/ h ‐BaTiO 3− x N y remains unchanged after exposure to water. The 15 NH 3 decomposition reaction and Fourier transform‐infrared spectroscopy (FT‐IR) measurements reveal that lattice nitrogen vacancy sites on h ‐BaTiO 3− x N y function as the active sites for ammonia decomposition. The ammonia decomposition activity of Ni/ h ‐BaTiO 3− x N y is also higher than that of the Ni/ h ‐BaTiO 3− x H y oxyhydride catalyst, making a contrast to the activity trend in ammonia synthesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI