可观测性
Petri网
可达性
可见的
有界函数
计算机科学
监督控制
事件(粒子物理)
基础(线性代数)
状态空间
图论
观察员(物理)
控制理论(社会学)
图形
集合(抽象数据类型)
数学
理论计算机科学
算法
控制(管理)
人工智能
应用数学
量子力学
统计
组合数学
物理
数学分析
程序设计语言
几何学
作者
Xuya Cong,Maria Pia Fanti,Agostino Marcello Mangini,Zhiwu Li
出处
期刊:IEEE Transactions on Automatic Control
[Institute of Electrical and Electronics Engineers]
日期:2023-12-01
卷期号:68 (12): 8158-8164
被引量:7
标识
DOI:10.1109/tac.2023.3292747
摘要
A discrete event system is said to be critically observable if the observer can always determine whether the current state necessarily belongs to a set of critical states. This paper focuses on two issues related to the safety and security of discrete event systems, namely critical observability verification and enforcement of labeled Petri nets. First, given a bounded net, we verify its critical observability by using basis markings and solving some integer linear programming problems, thus avoiding the enumeration of the full state space of a net system. Moreover, for a non-critically observable net system, we obtain a feasible stop-free event set from a twin basis reachability graph such that a valid control policy can be always found, if the feasible stop-free event set is non-empty. Finally, according to the feasible stop-free event set, a set of disabled edges is generated, and an online control policy is developed based on the supervisory control theory, which guarantees that the closed-loop system is critically observable and deadlock-free.
科研通智能强力驱动
Strongly Powered by AbleSci AI