已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Cross-Modal Transformers for Infrared and Visible Image Fusion

计算机科学 人工智能 图像融合 卷积神经网络 特征提取 模式识别(心理学) 融合 计算机视觉 融合规则 特征(语言学) 目标检测 图像(数学) 语言学 哲学
作者
S.H. Park,An Gia Vien,Chul Lee
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 770-785 被引量:42
标识
DOI:10.1109/tcsvt.2023.3289170
摘要

Image fusion techniques aim to generate more informative images by merging multiple images of different modalities with complementary information. Despite significant fusion performance improvements of recent learning-based approaches, most fusion algorithms have been developed based on convolutional neural networks (CNNs), which stack deep layers to obtain a large receptive field for feature extraction. However, important details and contexts of the source images may be lost through a series of convolution layers. In this work, we propose a cross-modal transformer-based fusion (CMTFusion) algorithm for infrared and visible image fusion that captures global interactions by faithfully extracting complementary information from source images. Specifically, we first extract the multiscale feature maps of infrared and visible images. Then, we develop cross-modal transformers (CMTs) to retain complementary information in the source images by removing redundancies in both the spatial and channel domains. To this end, we design a gated bottleneck that integrates cross-domain interaction to consider the characteristics of the source images. Finally, a fusion result is obtained by exploiting spatial-channel information in refined feature maps using a fusion block. Experimental results on multiple datasets demonstrate that the proposed algorithm provides better fusion performance than state-of-the-art infrared and visible image fusion algorithms, both quantitatively and qualitatively. Furthermore, we show that the proposed algorithm can be used to improve the performance of computer vision tasks, e.g., object detection and monocular depth estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
66发布了新的文献求助10
刚刚
NexusExplorer应助sherrydeyu采纳,获得10
3秒前
谨慎天问完成签到,获得积分10
4秒前
无敌小宽哥完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
SciGPT应助66采纳,获得10
5秒前
丁鹏笑完成签到 ,获得积分0
8秒前
wanci应助齐嘉懿采纳,获得10
10秒前
桃铁完成签到,获得积分10
13秒前
18秒前
19秒前
21秒前
111完成签到,获得积分10
22秒前
22222发布了新的文献求助10
22秒前
ivy发布了新的文献求助30
22秒前
江河湖海完成签到 ,获得积分10
24秒前
齐嘉懿发布了新的文献求助10
24秒前
25秒前
27秒前
29秒前
30秒前
虚幻初之发布了新的文献求助10
32秒前
一番发布了新的文献求助10
36秒前
白了个白完成签到 ,获得积分10
37秒前
37秒前
共享精神应助小远采纳,获得10
38秒前
星河完成签到,获得积分10
39秒前
43秒前
JJ发布了新的文献求助10
44秒前
CipherSage应助焕颜采纳,获得10
45秒前
47秒前
47秒前
X悦发布了新的文献求助10
47秒前
48秒前
49秒前
鱼七发布了新的文献求助10
51秒前
小菡菡发布了新的文献求助10
51秒前
Manbo发布了新的文献求助10
54秒前
YanZhe发布了新的文献求助10
56秒前
十三完成签到 ,获得积分10
56秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959927
求助须知:如何正确求助?哪些是违规求助? 3506124
关于积分的说明 11128074
捐赠科研通 3238096
什么是DOI,文献DOI怎么找? 1789502
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803024