Cross-Modal Transformers for Infrared and Visible Image Fusion

计算机科学 人工智能 图像融合 卷积神经网络 特征提取 模式识别(心理学) 融合 计算机视觉 融合规则 特征(语言学) 目标检测 图像(数学) 哲学 语言学
作者
S.H. Park,An Gia Vien,Chul Lee
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 770-785 被引量:18
标识
DOI:10.1109/tcsvt.2023.3289170
摘要

Image fusion techniques aim to generate more informative images by merging multiple images of different modalities with complementary information. Despite significant fusion performance improvements of recent learning-based approaches, most fusion algorithms have been developed based on convolutional neural networks (CNNs), which stack deep layers to obtain a large receptive field for feature extraction. However, important details and contexts of the source images may be lost through a series of convolution layers. In this work, we propose a cross-modal transformer-based fusion (CMTFusion) algorithm for infrared and visible image fusion that captures global interactions by faithfully extracting complementary information from source images. Specifically, we first extract the multiscale feature maps of infrared and visible images. Then, we develop cross-modal transformers (CMTs) to retain complementary information in the source images by removing redundancies in both the spatial and channel domains. To this end, we design a gated bottleneck that integrates cross-domain interaction to consider the characteristics of the source images. Finally, a fusion result is obtained by exploiting spatial-channel information in refined feature maps using a fusion block. Experimental results on multiple datasets demonstrate that the proposed algorithm provides better fusion performance than state-of-the-art infrared and visible image fusion algorithms, both quantitatively and qualitatively. Furthermore, we show that the proposed algorithm can be used to improve the performance of computer vision tasks, e.g., object detection and monocular depth estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小太阳完成签到,获得积分20
1秒前
善良海云发布了新的文献求助10
1秒前
星燃发布了新的文献求助10
2秒前
lz应助AD采纳,获得10
3秒前
年轻的航空完成签到 ,获得积分10
3秒前
5秒前
慕青应助让我康康采纳,获得10
7秒前
善学以致用应助haiwei采纳,获得10
7秒前
7秒前
zxy发布了新的文献求助10
8秒前
热心梦易完成签到,获得积分10
10秒前
10秒前
11秒前
平天一狼完成签到,获得积分10
11秒前
欢喜的皮卡丘完成签到,获得积分10
13秒前
14秒前
曾无忧发布了新的文献求助10
14秒前
16秒前
让我康康完成签到,获得积分10
17秒前
18秒前
莹仔发布了新的文献求助10
19秒前
haiwei发布了新的文献求助10
20秒前
21秒前
victor266完成签到 ,获得积分10
23秒前
cbwmax完成签到 ,获得积分10
23秒前
情怀应助彪壮的青雪采纳,获得10
24秒前
26秒前
27秒前
上官若男应助平天一狼采纳,获得10
27秒前
在水一方应助Nashe采纳,获得10
27秒前
机智谷兰发布了新的文献求助30
27秒前
28秒前
丸子完成签到,获得积分10
31秒前
33秒前
CipherSage应助眯眯眼的逍遥采纳,获得10
33秒前
34秒前
lhnsisi完成签到,获得积分10
34秒前
HCLonely应助Wishingyuuu采纳,获得10
36秒前
Apollonia完成签到 ,获得积分10
36秒前
小蘑菇应助坚强的严青采纳,获得10
38秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228046
求助须知:如何正确求助?哪些是违规求助? 2875959
关于积分的说明 8193272
捐赠科研通 2543114
什么是DOI,文献DOI怎么找? 1373502
科研通“疑难数据库(出版商)”最低求助积分说明 646781
邀请新用户注册赠送积分活动 621276