Cross-Modal Transformers for Infrared and Visible Image Fusion

计算机科学 人工智能 图像融合 卷积神经网络 特征提取 模式识别(心理学) 融合 计算机视觉 融合规则 特征(语言学) 目标检测 图像(数学) 哲学 语言学
作者
S.H. Park,An Gia Vien,Chul Lee
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 770-785 被引量:106
标识
DOI:10.1109/tcsvt.2023.3289170
摘要

Image fusion techniques aim to generate more informative images by merging multiple images of different modalities with complementary information. Despite significant fusion performance improvements of recent learning-based approaches, most fusion algorithms have been developed based on convolutional neural networks (CNNs), which stack deep layers to obtain a large receptive field for feature extraction. However, important details and contexts of the source images may be lost through a series of convolution layers. In this work, we propose a cross-modal transformer-based fusion (CMTFusion) algorithm for infrared and visible image fusion that captures global interactions by faithfully extracting complementary information from source images. Specifically, we first extract the multiscale feature maps of infrared and visible images. Then, we develop cross-modal transformers (CMTs) to retain complementary information in the source images by removing redundancies in both the spatial and channel domains. To this end, we design a gated bottleneck that integrates cross-domain interaction to consider the characteristics of the source images. Finally, a fusion result is obtained by exploiting spatial-channel information in refined feature maps using a fusion block. Experimental results on multiple datasets demonstrate that the proposed algorithm provides better fusion performance than state-of-the-art infrared and visible image fusion algorithms, both quantitatively and qualitatively. Furthermore, we show that the proposed algorithm can be used to improve the performance of computer vision tasks, e.g., object detection and monocular depth estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李成哲完成签到,获得积分10
刚刚
刚刚
BeSideWorld发布了新的文献求助10
刚刚
尧肙发布了新的文献求助10
1秒前
研友_VZG7GZ应助金咪采纳,获得10
1秒前
脑洞疼应助朴素的妙旋采纳,获得10
2秒前
alazka完成签到,获得积分20
2秒前
朴实的手套完成签到,获得积分10
2秒前
Flipped完成签到,获得积分10
2秒前
2秒前
端庄荔枝完成签到,获得积分20
2秒前
桥豆麻袋完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
碧蓝老黑完成签到,获得积分10
3秒前
4秒前
xx发布了新的文献求助10
4秒前
梅梅好漂亮完成签到,获得积分10
4秒前
4秒前
烟花应助猪猪hero采纳,获得10
5秒前
6秒前
6秒前
6秒前
传统的孤丝完成签到 ,获得积分10
7秒前
7秒前
alazka发布了新的文献求助10
7秒前
科研通AI6应助MG采纳,获得10
7秒前
苏言止发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
8秒前
ztgzttt发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
小金鱼儿发布了新的文献求助10
9秒前
shuo0976完成签到,获得积分10
9秒前
英俊的铭应助靓丽初蓝采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629758
求助须知:如何正确求助?哪些是违规求助? 4720546
关于积分的说明 14970558
捐赠科研通 4787741
什么是DOI,文献DOI怎么找? 2556498
邀请新用户注册赠送积分活动 1517659
关于科研通互助平台的介绍 1478271