EFedDSA: An Efficient Differential Privacy-Based Horizontal Federated Learning Approach for Smart Grid Dynamic Security Assessment

计算机科学 可扩展性 差别隐私 智能电网 分布式计算 信息隐私 传输(电信) 网格 理论(学习稳定性) 机器学习 计算机安全 数据挖掘 工程类 数据库 电信 几何学 数学 电气工程
作者
Chao Ren,Tianjing Wang,Han Yu,Yan Xu,Zhao Yang Dong
出处
期刊:IEEE Journal on Emerging and Selected Topics in Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:13 (3): 817-828 被引量:9
标识
DOI:10.1109/jetcas.2023.3293253
摘要

Enhanced by machine learning (ML) techniques, data-driven dynamic security assessment (DSA) in smart cyber-physical grids has attracted significant research interest in recent years. However, the current centralized ML architectures have limited scalability, are vulnerable to privacy exposure, and are costly to manage. To resolve these limitations, we propose a novel effective and secure distributed DSA method based on horizontal federated learning (HFL) and differential privacy (DP), namely EFedDSA. It leverages local system operating data to predict and estimate the system stability status and optimize the power systems in a decentralized fashion. In order to preserve the privacy of the distributed DSA operating data, EFedDSA incorporates Gaussian mechanism into DP. To reduce the computational burden from multiple transmission communication rounds, a discounting method for the total communication round is proposed to reduce the total transmission rounds. Theoretical analysis on the Gaussian mechanism of EFedDSA provides formal DP guarantees. Extensive experiments conducted on the New England 10-machine 39-bus testing system and the synthetic Illinois 49-machine 200-bus testing system demonstrate that the proposed EFedDSA method can achieve advantageous DSA performance with fewer communication rounds, while protecting the privacy of the local model information compared to the state of the art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
薰硝壤应助慕杨采纳,获得50
刚刚
owlhealth完成签到,获得积分10
1秒前
1秒前
liubo完成签到,获得积分10
2秒前
咖啡豆应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
3秒前
科研小虫应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得30
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
Hayat应助科研通管家采纳,获得10
3秒前
咖啡豆应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
4秒前
安静板凳发布了新的文献求助10
4秒前
田様应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
4秒前
不安的朋友完成签到,获得积分10
4秒前
owlhealth发布了新的文献求助10
4秒前
5秒前
wls完成签到 ,获得积分10
5秒前
7秒前
7秒前
7秒前
9秒前
安静板凳完成签到,获得积分20
10秒前
yoyo发布了新的文献求助10
11秒前
快乐滑板发布了新的文献求助30
11秒前
Jasper应助yrp采纳,获得10
11秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140783
求助须知:如何正确求助?哪些是违规求助? 2791678
关于积分的说明 7800053
捐赠科研通 2448055
什么是DOI,文献DOI怎么找? 1302292
科研通“疑难数据库(出版商)”最低求助积分说明 626500
版权声明 601210