Spatial–Temporal Enhanced Network for Continuous Sign Language Recognition

计算机科学 判别式 人工智能 特征提取 模式识别(心理学) 提取器 手语 空间分析 特征(语言学) 利用 稳健性(进化) 计算机视觉 数学 统计 工程类 哲学 基因 生物化学 语言学 计算机安全 化学 工艺工程
作者
Wenjie Yin,Yonghong Hou,Zihui Guo,Kailin Liu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (3): 1684-1695 被引量:6
标识
DOI:10.1109/tcsvt.2023.3296668
摘要

Continuous Sign language Recognition (CSLR) aims to generate gloss sequences based on untrimmed sign videos. Since discriminative visual features are essential for CSLR, current efforts mainly focus on strengthening the feature extractor. The feature extractor can be disassembled into a spatial representation module and a short-term temporal module for spatial and visual features modeling. However, existing methods always regard it as a monoblock and rarely implement specific refinements for such two distinct modules, which is difficult to achieve effective modeling of spatial appearance information and temporal motion information. To address the above issues, we proposed a spatial temporal enhanced network which contains a spatial-visual alignment (SVA) module and a temporal feature difference (TFD) module. Specifically, the SVA module conducts an auxiliary task between the spatial features and target gloss sequences to enhance the extraction of hand and facial expressions. Meanwhile, the TFD module is constructed to exploit the underlying dynamic between consecutive frames and inject the aggregated motion information into spatial features to assist short-term temporal modeling. Extensive experimental results demonstrate the effectiveness of the proposed modules and our network achieves state-of-the-art or competitive performance on four public CSLR datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lin发布了新的文献求助10
1秒前
2秒前
3秒前
4秒前
Cookie完成签到,获得积分20
5秒前
岁月静好完成签到,获得积分20
6秒前
情怀应助Norzing采纳,获得10
6秒前
ZGZ123发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
小马甲应助顺利的夜梦采纳,获得10
8秒前
记忆等于零完成签到,获得积分10
8秒前
科研通AI2S应助llll采纳,获得30
8秒前
娟子完成签到,获得积分10
9秒前
yang发布了新的文献求助10
9秒前
wellme发布了新的文献求助10
11秒前
11秒前
11秒前
失眠南蕾发布了新的文献求助10
11秒前
我是老大应助A_goal采纳,获得10
11秒前
12秒前
Emma发布了新的文献求助10
13秒前
15秒前
怕黑的莫茗完成签到,获得积分10
16秒前
所所应助平淡的乐曲采纳,获得10
16秒前
17秒前
17秒前
英俊的铭应助yang采纳,获得10
17秒前
李健的小迷弟应助xiaochao采纳,获得10
18秒前
19秒前
可爱的函函应助qianqian采纳,获得10
19秒前
20秒前
21秒前
22秒前
22秒前
22秒前
23秒前
卷卷完成签到 ,获得积分10
23秒前
24秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962134
求助须知:如何正确求助?哪些是违规求助? 3508388
关于积分的说明 11140655
捐赠科研通 3241036
什么是DOI,文献DOI怎么找? 1791184
邀请新用户注册赠送积分活动 872809
科研通“疑难数据库(出版商)”最低求助积分说明 803371