Robust Preference Learning for Recommender Systems under Purchase Behavior Shifts

电影 计算机科学 推荐系统 稳健性(进化) 机器学习 投票 人工智能 样品(材料) 偏爱 协同过滤 数据挖掘 统计 生物化学 化学 数学 色谱法 政治 政治学 法学 基因
作者
Junruo Gao,Yuyang Liu,Zhaojuan Yue,Haibo Wu,Jun Li
标识
DOI:10.1109/cscwd57460.2023.10152702
摘要

Learning user preferences by modeling historical purchase behaviors has significantly succeeded in existing recommender systems. Most use trained models to make predictions for users, and they assume that the training data samples and test data sample sets come from the same distribution. However, in practical applications, the distribution of users’ true preferences may be more complicated, and data drift can easily make the trained model invalid on the test dataset. In this case, to accurately model user preferences based on their historical behavior, two difficulties need to be addressed. First, it is difficult to model various purchase behavior shift situations due to their complexity. Second, inferring users’ true preferences from the complicated shifting cases is challenging. To solve the above problems, we build a robust recommender system to predict possible user purchase shifts and make recommendations for users. First, we propose a simulating strategy to cover possible scenarios when user purchase behavior shifts. Second, we build a novel voting framework to ensure the robustness of predicting results based on learned preferences. Extensive experiments were conducted, and the results demonstrate the outstanding performance of the proposed method on MovieLens-1M and LastFM datasets, providing at most 37.31% and 30.95% relative performance gains, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kk完成签到,获得积分10
1秒前
调皮傲易完成签到 ,获得积分10
2秒前
xc完成签到,获得积分10
2秒前
乐观静蕾发布了新的文献求助10
3秒前
HEnli完成签到,获得积分20
5秒前
6秒前
6秒前
8秒前
SciGPT应助js采纳,获得10
9秒前
CodeCraft应助cza采纳,获得10
10秒前
10秒前
tdtk发布了新的文献求助10
12秒前
海之关注了科研通微信公众号
14秒前
Focus_BG发布了新的文献求助10
15秒前
李爱国应助云澈采纳,获得10
16秒前
cza完成签到,获得积分20
17秒前
Yohna完成签到 ,获得积分10
18秒前
刘羿完成签到,获得积分10
19秒前
慕青应助李李05采纳,获得10
19秒前
19秒前
19秒前
19秒前
萧水白发布了新的文献求助10
20秒前
21秒前
积极的曼彤完成签到,获得积分10
23秒前
宁过儿发布了新的文献求助10
23秒前
23秒前
25秒前
背后竺发布了新的文献求助10
26秒前
tdtk发布了新的文献求助10
26秒前
云澈发布了新的文献求助10
27秒前
量子星尘发布了新的文献求助10
28秒前
沐雨汐完成签到,获得积分10
29秒前
30秒前
高挑的牛青完成签到,获得积分10
30秒前
kk发布了新的文献求助10
31秒前
31秒前
31秒前
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953205
求助须知:如何正确求助?哪些是违规求助? 3498532
关于积分的说明 11092425
捐赠科研通 3229120
什么是DOI,文献DOI怎么找? 1785211
邀请新用户注册赠送积分活动 869286
科研通“疑难数据库(出版商)”最低求助积分说明 801415