亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Review of Veterinary Drug Residue Detection: Recent Advancements, Challenges, and Future Directions

兽药 兽药 牲畜 兽医学 生物技术 农业 食品安全 药品 畜牧业 人类健康 动物健康 风险分析(工程) 业务 医学 环境卫生 药理学 生物 病理 化学 生态学 色谱法
作者
Haoting Wu,Junfang Zhao,Jianqing Wan
出处
期刊:Sustainability [MDPI AG]
卷期号:15 (13): 10413-10413 被引量:12
标识
DOI:10.3390/su151310413
摘要

Veterinary drug residues of common food (milk, meat) have posed serious threats to the environment and human health, making the quality and safety of agricultural, livestock, and aquatic products increasingly prominent. With the widespread use of veterinary drugs and the requirements for food safety, it has become urgent to detect veterinary drug residues in animal-derived foods. So far, few studies have systematically reviewed the progresses, challenges, and future directions in veterinary drug residue detection. A thorough review on the current advancements, challenges, and potential future directions of veterinary drug residue detection will be extremely beneficial and timely. This study reviewed recent developments of detection technology of veterinary drug residues. The current issues and challenges in veterinary drug residue detection were examined and highlighted. Finally, future proposals on directions and prospects for veterinary drug residue detection were suggested. High-throughput and high-sensitivity veterinary drug detection technology, sample pretreatment technology for rapid processing, and the fusion of multiple detection methods were recommended as the main directions for the future development of veterinary drug residue detection. It was suggested to develop the analysis and detection technologies of veterinary drug residue towards high automation, high sensitivity, and high throughput in the future. This review provides new ideas and strategies for the rapid development of animal husbandry industry and protecting consumers’ physical health and food safety.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
泷生完成签到,获得积分10
3秒前
bkagyin应助圆圆采纳,获得10
8秒前
9秒前
wang5945完成签到 ,获得积分10
10秒前
12秒前
方yc完成签到,获得积分10
15秒前
财路通八方完成签到 ,获得积分10
16秒前
lzl008完成签到 ,获得积分10
19秒前
22秒前
23秒前
111112发布了新的文献求助50
27秒前
5t5完成签到 ,获得积分10
28秒前
28秒前
兰周发布了新的文献求助10
29秒前
Hello应助NKKKKKK采纳,获得10
30秒前
31秒前
lzl007完成签到 ,获得积分10
32秒前
圆圆发布了新的文献求助10
37秒前
坦率依玉发布了新的文献求助10
37秒前
38秒前
我要发核心完成签到 ,获得积分10
40秒前
兰周完成签到,获得积分10
41秒前
悦雨完成签到,获得积分10
42秒前
开朗醉波发布了新的文献求助10
45秒前
一二完成签到 ,获得积分10
45秒前
111112完成签到,获得积分10
47秒前
53秒前
liang完成签到 ,获得积分10
58秒前
59秒前
领导范儿应助琳琳采纳,获得10
1分钟前
1分钟前
NKKKKKK发布了新的文献求助10
1分钟前
飞飞完成签到,获得积分10
1分钟前
1分钟前
NattyPoe发布了新的文献求助100
1分钟前
Wait201113应助科研通管家采纳,获得10
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
Wait201113应助科研通管家采纳,获得10
1分钟前
Wait201113应助科研通管家采纳,获得10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870591
求助须知:如何正确求助?哪些是违规求助? 6463951
关于积分的说明 15664463
捐赠科研通 4986675
什么是DOI,文献DOI怎么找? 2688931
邀请新用户注册赠送积分活动 1631313
关于科研通互助平台的介绍 1589367