环境科学
沉积物
播种
河岸带
中观
营养物
环境化学
农学
生态学
化学
生物
栖息地
古生物学
作者
Yi Li,Shengxiang Rong,Chi Zhang,Huaqiang Chu,Pengcheng Wei,Shu Tao
标识
DOI:10.1016/j.scitotenv.2023.165452
摘要
The continued deterioration of riparian ecosystems is a worldwide concern, which can lead to soil erosion, plant degradation, biodiversity loss, and water quality decline. Here, taking into account waste resource utilization and eco-environmental friendliness, the sediment-modified planting eco-concrete with both H. verticillata and T. orientalis (SEC-H&T) was prepared and explored for the first time to achieve sustainable riparian restoration. Concrete mechanical characterizations showed that the compressive strength and porosity of SEC with 30% sediment content could reach up to 15.8 MPa and 21.25%, respectively. The mechanical properties and the sediment utilization levels of SEC were appropriately balanced, and potentially toxic element leaching results verified the environmental safety of eco-concrete modified with dredged sediments. Plant physiological parameters of both aquatic plants (biomass, chlorophyll, protein and starch) were observed to reach the normal levels in SEC during the 30-day culture period, and T. orientalis seemed better adapted to SEC environment than H. verticillate. Importantly, compared to SEC-H and SEC-T, SEC-H&T could effectively reduce the concentrations of COD, TN and TP by 58.59%, 74.00% and 79.98% in water, respectively. Notably, water purification mechanisms by SEC-H&T were further elucidated from the perspective of microbial community responses. Shannon index of bacterial diversity and proliferation of specific populations dominating nutrient transformation (such as Bacillus and Nitrospira) was increased under the synergy of SEC and aquatic plants. Correspondingly, functional genes involved in nitrogen and phosphorus transformation (such as nosZ and phoU) were also enriched. Our study can not only showcase an effective and flexible approach to recycle dredged sediments into eco-concrete with low environment impacts, but also provide a promising alternative for sustainable riparian restoration.
科研通智能强力驱动
Strongly Powered by AbleSci AI