Evaluating the potential of nanofiltration membranes for removing ammonium, nitrate, and nitrite in drinking water sources

纳滤 化学 氮气 环境化学 渗透 硝酸盐 亚硝酸盐 水质 膜技术 水处理 环境工程 环境科学 有机化学 生物化学 生态学 生物
作者
A. G. POPOVA,Radamanee Rattanakom,Zhi‐Qiang Yu,Zhuolin Li,Kei Nakagawa,Takahiro Fujioka
出处
期刊:Water Research [Elsevier]
卷期号:244: 120484-120484 被引量:18
标识
DOI:10.1016/j.watres.2023.120484
摘要

Advanced drinking water treatment process using nanofiltration (NF) membranes has gained attention recently because it removes many challenging constituents in contaminated surface waters, such as dissolved organics and heavy metals. However, much literature has reported high variations and uncertainties of NF membranes for removing nitrogen compounds in the contaminated water—ammonium (NH4+), nitrates (NO3−), and nitrites (NO2−). This study aimed to identify the ability of commercial NF membranes to remove NH4+, NO2−, and NO3− and clarify the mechanisms underlying their transport through NF membranes. This was examined by evaluating their rejection by three commercial NF membranes using artificial and actual river waters under various conditions (variable permeate flux, temperature, pH, and ionic strength). Ammonium commonly showed the highest removal among the three nitrogen compounds, followed by nitrites and nitrates. Interestingly, ammonium removal varied considerably from 6% to 86%, depending on the membrane type and operating conditions. The results indicated that the selected nitrogen compounds (NH4+, NO2−, and NO3−) could be highly rejected depending on the clearance between their hydrated radius and the membrane's pore walls. Further, the rejection of the lowest molecular-weight nitrogen compound (NH4+) could be higher than NO2− and NO3− due to its highest energy barrier and larger hydrated radius. This study suggests that compliance with the drinking water regulations of NH4+, NO2−, and NO3− can be reliably achieved by selecting appropriate membrane types and predicting the range of their removal under various feed water quality and operating conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
流年完成签到 ,获得积分10
刚刚
MADKAI发布了新的文献求助10
刚刚
xunxunmimi完成签到,获得积分10
1秒前
1秒前
1秒前
刘星星发布了新的文献求助10
2秒前
CodeCraft应助科研菜鸟采纳,获得20
2秒前
zyyyyyyyyyyy完成签到,获得积分10
3秒前
4秒前
研友_8yN60L发布了新的文献求助30
4秒前
打打应助柳七采纳,获得10
5秒前
零零二完成签到 ,获得积分10
5秒前
韭菜盒子发布了新的文献求助10
6秒前
Maestro_S完成签到,获得积分0
6秒前
volzzz发布了新的文献求助10
6秒前
wgglegg完成签到,获得积分10
6秒前
科研通AI5应助小胖鱼采纳,获得10
6秒前
酷波er应助黄超采纳,获得10
6秒前
6秒前
大智若愚啊完成签到,获得积分20
6秒前
7秒前
7秒前
7秒前
彬彬发布了新的文献求助10
7秒前
健壮丹妗完成签到 ,获得积分10
7秒前
Orange应助铸一字错采纳,获得10
7秒前
7秒前
Accept应助阿烨采纳,获得10
9秒前
欧阳小枫发布了新的文献求助10
10秒前
11秒前
Heidi完成签到 ,获得积分10
11秒前
见雨鱼发布了新的文献求助10
11秒前
学术扛把子完成签到 ,获得积分10
11秒前
Lucas应助陈某某采纳,获得10
11秒前
尊敬的钥匙完成签到,获得积分10
12秒前
13秒前
13秒前
赘婿应助无情的白桃采纳,获得10
13秒前
习习应助zhu96114748采纳,获得10
14秒前
英姑应助韭菜盒子采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740