Microstructure and properties of multi-layer and multi-bead parts of 316 stainless steel fabricated by laser-arc hybrid additive manufacturing

材料科学 微观结构 钨极气体保护焊 复合材料 惰性气体 维氏硬度试验 压痕硬度 冶金 晶界 电弧焊 焊接
作者
Zhaodong Zhang,Qipeng Wang,Yajing He,Xu Wang,Siyu Yuan,Gang Song
出处
期刊:Optics and Laser Technology [Elsevier]
卷期号:168: 109903-109903 被引量:13
标识
DOI:10.1016/j.optlastec.2023.109903
摘要

In this work, using tungsten inert gas (TIG) arc and laser-tungsten inert gas arc hybrid as heat sources, multi-layer and multi-bead thick wall specimens of 316 stainless steel were fabricated by additive manufacturing technology with different deposit paths. The microstructure, element distribution and mechanical properties of the specimens were studied. The results showed that there were obvious differences in microstructure in the middle area of the specimen. The dendrites of parallel reciprocating specimens were coarse and developed, and the growth direction was highly consistent. And the disordered dendrite growth direction of cross shaped specimen was many, and the interlayer transition area was large. The secondary dendrite of insert stacking was not developed and its microstructure was fine. The Vickers hardness of the specimen decreased first and then increased from the bottom to the top. After adding laser, the arc shrank, the stability and efficiency of the additive manufacturing process increased, and the heat input decreased. Ni and Cr were distributed along the grain boundary at the bottom area of the specimen. The Ni element in the middle and the top area was concentrated in the γ austenite, Cr element was segregated in δ ferrite. In addition, the microstructure of the specimens is finer than that of the specimens with tungsten inert gas (TIG) arc additive manufacturing, and the grain boundaries were mainly small angle grain boundaries. The microhardness and tensile properties of the specimens were improved by adding laser.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芝士发布了新的文献求助10
2秒前
万能图书馆应助majf采纳,获得10
2秒前
3秒前
YuZhang8034完成签到,获得积分10
3秒前
woy031222完成签到 ,获得积分10
4秒前
ZOE应助2549360318采纳,获得30
4秒前
chen完成签到,获得积分10
4秒前
enen发布了新的文献求助10
4秒前
4秒前
5秒前
paixxxxx完成签到,获得积分10
5秒前
CodeCraft应助zzzwww采纳,获得10
5秒前
5秒前
6秒前
6秒前
6秒前
哈哈哈哈哈哈完成签到 ,获得积分10
6秒前
王楠楠完成签到 ,获得积分10
7秒前
7秒前
8秒前
9秒前
9秒前
9秒前
酷酷三问发布了新的文献求助10
9秒前
10秒前
10秒前
落后的老太完成签到,获得积分10
10秒前
chen发布了新的文献求助10
10秒前
张欣宇发布了新的文献求助10
11秒前
Abdurrahman完成签到,获得积分10
11秒前
蓝天发布了新的文献求助10
11秒前
硬币完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
科研求求你嘛完成签到,获得积分10
12秒前
愉快的苑博完成签到,获得积分10
13秒前
次一口多多完成签到,获得积分10
13秒前
13秒前
xx发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608315
求助须知:如何正确求助?哪些是违规求助? 4692918
关于积分的说明 14876115
捐赠科研通 4717325
什么是DOI,文献DOI怎么找? 2544189
邀请新用户注册赠送积分活动 1509187
关于科研通互助平台的介绍 1472836